"""optimizer优化器"""
import torch
import torch.utils.data as Data #批处理模块
from torch.autograd import Variable
import torch.nn.functional as F #激励函数模块
import matplotlib.pyplot as plt #画图模块
#hyper parameters 超参数
LR = 0.01 #学习率
BATCH_SIZE = 32 #批处理尺寸
EPOCH = 12 #数据迭代轮数
#回归数据
x = torch.unsqueeze(torch.linspace(-1, 1, 1000),dim = 1) #-1 到1 取1000个数 dim = 1 代表结果是列向量
# print(x)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# print(y)
torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,
shuffle=True,)
#建立神经网络
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20)
self.predict = torch.nn.Linear(20, 1)
def forward(self, x): #前向传递过程
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
# different nets
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD,net_Momentum,net_RMSprop,net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9,0.99))
optimizers = [opt_SGD,opt_Momentum,opt_RMSprop,opt_Adam]
loss_func = torch.nn.MSELoss()
losses_his = [[],[],[],[]]
for epoch in range(EPOCH):
print(epoch)
for step, (batch_x, batch_y) in enumerate(loader):
# b_x = Variable(batch_x)
# b_y = Variable(batch_y)
for net, opt, l_his in zip(nets, optimizers,losses_his):
output = net(x)
loss = loss_func(output, y)
#
opt.zero_grad() # 所有梯度为0
loss.backward() # 反向传递
opt.step() # 优化梯度
print(loss.data)
l_his.append(loss.data)
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0,0.2))
plt.show()
转自:https://www.bilibili.com/video/av15997678/?p=17
pytorch 多种optimizer优化器 的使用
最新推荐文章于 2023-12-12 14:45:58 发布