tf.placeholder(dtype, shape=None, name=None)
此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值。
dtype:数据类型。常用的是tf.float32,tf.float64等数值类型
shape:数据形状。shape[a,b]: a表示喂几组数据,默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定。b表示输入数据有几个特征。
name:名称。
返回:
Tensor类型
x = tf.placeholder(tf.float32, shape=(1, 1024))
// 喂一组数据,1024种特征
y = tf.matmul(x, x)
with tf.Session() as sess:
print(sess.run(y)) # ERROR: 此处x还没有赋值.