第一章,05-行列式的计算

简介

这是《玩转线性代数》的学习笔记。
这节原文里行列式太多,部分示例请查看原文。

定义法

适用零多的行列式

性质法

参考上节提到的性质,将特殊行列式直接求解或化简

化三角法

利用性质5,将某行的常数倍加到另一行上,行列式值不变。
可以将行列式化为上三角或下三角形式,从而求出行列式的值。

拉普拉斯公式

D = ∣ a 11 ⋯ a 1 k 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ a k 1 ⋯ a k k 0 ⋯ 0 c 11 ⋯ c 1 k b 11 ⋯ b 1 n ⋮ ⋮ ⋮ ⋮ c n 1 ⋯ c n k b n 1 ⋯ b n n ∣ D=\begin{vmatrix} a_{11} & \cdots & a_{1k} & 0 & \cdots & 0\\ \vdots & & \vdots &\vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} & 0 & \cdots & 0 \\ c_{11} & \cdots & c_{1k} & b_{11} & \cdots & b_{1n}\\ \vdots & & \vdots &\vdots & & \vdots \\ c_{n1} & \cdots & c_{nk} & b_{n1} & \cdots & b_{nn} \\ \end{vmatrix} D=a11ak1c11cn1a1kakkc1kcnk00b11bn100b1nbnn
D 1 = d e t ( a i j ) = ∣ a 11 ⋯ a 1 k ⋮ ⋮ a k 1 ⋯ a k k ∣ D_1=det(a_{ij})=\begin{vmatrix} a_{11} & \cdots & a_{1k}\\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix} D1=det(aij)=a11ak1a1kakk
D 2 = ∣ b 11 ⋯ b 1 n ⋮ ⋮ b n 1 ⋯ b n n ∣ D_2=\begin{vmatrix} b_{11} & \cdots & b_{1n}\\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \\ \end{vmatrix} D2=b11bn1b1nbnn
拉普拉斯公式: D = D 1 D 2 D=D_1D_2 D=D1D2,证明如下:
证:
D 1 D_1 D1作一系列行操作( r i + k r j r_i+kr_j ri+krj),对 D 2 D_2 D2作一系列列操作( c i + k c j c_i+kc_j ci+kcj),可分别把 D 1 D_1 D1 D 2 D_2 D2化为下三角形式:

D 1 = ∣ p 11 ⋯ 0 ⋮ ⋱ ⋮ p k 1 ⋯ p k k ∣ = p 11 ⋯ p k k D_1=\begin{vmatrix} p_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ p_{k1} & \cdots & p_{kk} \end{vmatrix}=p_{11} \cdots p_{kk} D1=p11pk10pkk=p11pkk D 2 = ∣ q 11 ⋯ 0 ⋮ ⋱ ⋮ q n 1 ⋯ q n n ∣ = q 11 ⋯ q n n D_2=\begin{vmatrix} q_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ q_{n1} & \cdots & q_{nn} \end{vmatrix}=q_{11} \cdots q_{nn} D2=q11qn10qnn=q11qnn.
D D D的前k行作与 D 1 D_1 D1相同的一系列行操作( r i + k r j r_i+kr_j ri+krj),再对后n列作与 D 2 D_2 D2相同的一系列列操作( c i + k c j c_i+kc_j ci+kcj),可把 D D D化为下三角形式:
D = ∣ p 11 ⋮ ⋱ O p k 1 ⋯ p k k c 11 ⋯ c 1 k q 11 ⋮ ⋮ ⋮ ⋱ c n 1 ⋯ c n k q n 1 ⋯ q n n ∣ D=\begin{vmatrix} p_{11} && & & & \\ \vdots & \ddots& & & O& \\ p_{k1} & \cdots & p_{kk} & & & \\ c_{11} & \cdots & c_{1k} & q_{11} & & \\ \vdots & & \vdots &\vdots & \ddots& \\ c_{n1} & \cdots & c_{nk} & q_{n1} & \cdots & q_{nn} \\ \end{vmatrix} D=p11pk1c11cn1pkkc1kcnkq11qn1Oqnn

所以 D = p 11 ⋯ p k k ⋅ q 11 ⋯ q n n = D 1 D 2 D=p_{11} \cdots p_{kk} \cdot q_{11} \cdots q_{nn}=D_1D_2 D=p11pkkq11qnn=D1D2

递推法

根据行列式的特点寻找 D n 与 D n − 1 D_n与D_{n-1} DnDn1 D n + 1 D_{n+1} Dn+1等的递推关系,再根据递推公式进行求解.
例见原文
注:原文包含范德蒙行列式的证明

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值