[Matlab]维纳滤波器设计

本文介绍维纳滤波器的设计原理及其在信号处理中的应用,包括滤波器的数学模型、MATLAB实现代码及语音信号去噪案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[Matlab]维纳滤波器设计

​ 维纳滤波(wiener filtering) 一种基于最小均方误差准则、对平稳过程的最优估计器。这种滤波器的输出与期望输出之间的均方误差为最小,因此,它是一个最佳滤波系统。它可用于提取被平稳噪声污染的信号。

​ 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值,而相应的装置称为滤波器。根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。维纳滤波器是一种线性滤波器。

基本概念

​ 从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。

维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲激响应。如果能够满足维纳-霍夫方程 [3] ,就可使维纳滤波器达到最佳。根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数所决定。

维纳滤波器优缺点

维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。

实现维纳滤波的要求是:

1.输入过程是广义平稳

2.输入过程的统计特性是已知的。根据其他最佳准则的滤波器亦有同样要求

然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而难以满足上述两个要求。这就促使人们研究自适应滤波器

维纳滤波器原理分析:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;clear all; close all;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%输入信号
A=1;                                                      %信号的幅值
f=1000;                                                 %信号的频率
fs=10^5;                                                %采样频率
t=(0:999);                                              %采样点
Mlag=100;                                             %相关函数长度变量   
x=A*cos(2*pi*f*t/fs);                                %输入正弦波信号
xmean=mean(x);                                    %正弦波信号均值
xvar=var(x,1);                                         %正弦波信号方差
noise=wgn(1,1000,2);%产生1行1000列的矩阵,强度为2dbw
xn=x+noise;                                         %给正弦波信号加入信噪比为20dB的高斯白噪声
plot(t,xn)    
xlabel('x轴单位:t/s','color','b')
ylabel('y轴单位:A/V','color','b')
xnmean = mean(xn)                                  %计算加噪信号均值
xnms = mean(xn.^2)                                  %计算加噪信号均方值
xnvar = var(xn,1)                                       %计算输入信号方差
Rxn=xcorr(xn,Mlag,'biased');                   %计算加噪信号自相关函数
figure(2)
subplot(221)
plot((-Mlag:Mlag),Rxn)                             %绘制自相关函数图像
title('加噪信号自相关函数图像')
[f,xi]=ksdensity(xn);                                  %计算加噪信号的概率密度,f为样本点xi处的概率密度
subplot(222)
plot(xi,f)                                                   %绘制概率密度图像
title('加噪信号概率密度图像')
X=fft(xn);                                                  %计算加噪信号序列的快速离散傅里叶变换
Px=X.*conj(X)/600;                                   %计算信号频谱
subplot(223)
semilogy(t,Px)                                          %绘制在半对数坐标系下频谱图像
title('输入信号在半对数坐标系下频谱图像')
xlabel('x轴单位:w/rad','color','b')
ylabel('y轴单位:w/HZ','color','b')
pxx=periodogram(xn);                               %计算加噪信号的功率谱密度
subplot(224)
semilogy(pxx)                                           %绘制在半对数坐标系下功率谱密度图像
title('加噪信号在半对数坐标系下功率谱密度图像')
 
xlabel('x轴单位:w/rad','color','b')
ylabel('y轴单位:w/HZ','color','b')
 
%维纳滤波
N=100;                                                        %维纳滤波器长度
Rxnx=xcorr(xn,x,Mlag,'biased');                   %产生加噪信号与原始信号的互相关函数
rxnx=zeros(N,1);                                       
rxnx(:)=Rxnx(101:101+N-1);
Rxx=zeros(N,N);                                          %产生加噪信号自相关矩阵
Rxx=diag(Rxn(101)*ones(1,N));
for i=2:N
    c=Rxn(101+i)*ones(1,N+1-i);
    Rxx=Rxx+diag(c,i-1)+diag(c,-i+1);
end
Rxx;
h=zeros(N,1);
h=inv(Rxx)*rxnx;                                          %计算维纳滤波器的h(n)
yn=filter(h,1,xn);                                         %将加噪信号通过维纳滤波器
figure(5)
plot(yn)                                                      %绘制经过维纳滤波器后信号图像
title('经过维纳滤波器后信号信号图像')
xlabel('x轴单位:f/HZ','color','b')
ylabel('y轴单位:A/V','color','b')
ynmean=mean(yn)                                     %计算经过维纳滤波器后信号均值
ynms=mean(yn.^2)                                     %计算经过维纳滤波器后信号均方值
ynvar=var(yn,1)                                         %计算经过维纳滤波器后信号方差
Ryn=xcorr(yn,Mlag,'biased');                     %计算经过维纳滤波器后信号自相关函数
figure(6)
subplot(221)
plot((-Mlag:Mlag),Ryn)                               %绘制自相关函数图像
title('经过维纳滤波器后信号自相关函数图像')
[f,yi]=ksdensity(yn);                                    %计算经过维纳滤波器后信号的概率密度,f为样本点xi处的概率密度
subplot(222)
plot(yi,f)                                                     %绘制概率密度图像
title('经过维纳滤波器后信号概率密度图像')
Y=fft(yn);                                                   %计算经过维纳滤波器后信号序列的快速离散傅里叶变换
Py=Y.*conj(Y)/600;                                    %计算信号频谱
subplot(223)
semilogy(t,Py)                                           %绘制在半对数坐标系下频谱图像
title('经过维纳滤波器后信号在半对数坐标系下频谱图像')
xlabel('x轴单位:w/rad','color','b')
ylabel('y轴单位:w/HZ','color','b')
pyn=periodogram(yn);                               %计算经过维纳滤波器后信号的功率谱密度
subplot(224)
semilogy(pyn)                                            %绘制在半对数坐标系下功率谱密度图像
title('经过维纳滤波器后信号在半对数坐标系下功率谱密度图像')
xlabel('x轴单位:w/rad','color','b')
ylabel('y轴单位:w/HZ','color','b')
subplot(4,1,1),plot(noise); title('噪声信号')
subplot(4,1,2),plot(x); title('正弦信号')
subplot(4,1,3),plot(xn); title('加噪信号')
subplot(4,1,4),plot(yn); title('维纳信号')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l4aYBBxc-1575103200850)(G:\研究生\项目小组任务\笔记\第四周和第五周笔记\wener_s.bmp)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-95gNWl4T-1575103200852)(G:\研究生\项目小组任务\笔记\第四周和第五周笔记\wener_own.bmp)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uHNk1qSD-1575103200853)(G:\研究生\项目小组任务\笔记\第四周和第五周笔记\wener_result.bmp)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-56T1FZzb-1575103200856)(G:\研究生\项目小组任务\笔记\第四周和第五周笔记\wener_compare.bmp)]

维纳滤波器函数设计:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%维纳滤波器函数设计
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y =wienerfilter(x,Rxx,Rxd,N) 
%进行维纳滤波 
%x是输入信号,Rxx是输入信号的自相关向量 
%Rxd是输入信号和理想信号的的互相关向量,N是维纳滤波器的长度 
%输出y是输入信号通过维纳滤波器进行维纳滤波后的输出 
h=yulewalker(Rxx,Rxd,N);								%求解维纳滤波器系数 
t=conv(x,h);											%进行滤波 
Lh=length(h);											%得到滤波器的长度 
Lx=length(x);											%得到输入信号的长度 
y=t(double(uint16(Lh/2)):Lx+double(uint16(Lh/2))-1);%输出序列y的长度和输入序列x的长度相同
%以下是维纳滤波器系数的求解 
function h=yulewalker(A,B,M)    
%求解Yule-Walker方程 
%A是接收信号的自相关向量为 Rxx(0),Rxx(1),......,Rxx(M-1) 
%B是接收信号和没有噪声干扰信号的互相关向量为 Rxd(0),Rxd(1),......,Rxd(M-1) 
%M是滤波器的长度 
%h保存滤波器的系数 
T1=zeros(1,M);%T1存放中间方程的解向量 
T2=zeros(1,M);%T2存放中间方程的解向量 
T1(1)=B(1)/A(1); 
T2(1)=A(2)/A(1); 
X=zeros(1,M); 
for i=2:M-1 
temp1=0; 
temp2=0; 
    for j=1:i-1 
        temp1=temp1+A(i-j+1)*T1(j); 
        temp2=temp2+A(i-j+1)*T2(j); 
    end 
    X(i)=(B(i)-temp1)/(A(1)-temp2); 
    for j=1:i-1 
        X(j)=T1(j)-X(i)*T2(j); 
    end 
    for j=1:i 
        T1(j)=X(j); 
    end 
temp1=0; 
temp2=0; 
    for j=1:i-1 
        temp1=temp1+A(j+1)*T2(j); 
        temp2=temp2+A(j+1)*T2(i-j); 
    end 
    X(1)=(A(i+1)-temp1)/(A(1)-temp2); 
    for j=2:i 
        X(j)=T2(j-1)-X(1)*T2(i-j+1); 
    end 
    for j=1:i 
        T2(j)=X(j); 
    end 
end 
temp1=0; 
temp2=0; 
for j=1:M-1 
	temp1=temp1+A(M-j+1)*T1(j); 
	temp2=temp2+A(M-j+1)*T2(j); 
end 
X(M)=(B(M)-temp1)/(A(1)-temp2); 
for j=1:M-1 
	X(j)=T1(j)-X(M)*T2(j); 
end 
h=X;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%维纳滤波器案例测试
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;clear all; close all;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load handel						%加载语音信号
d=y; d=d*8;						%增强语音信号强度
d=d';
[m,n]=size(d);
T = 1/Fs; % 采样时间
t = (1:n)*T;% 时间
subplot(3,2,1);
plot(t,d);				
title('原始语音信号');
xlabel('时间/t');
ylabel('幅值/dB');
fq=fft(d,8192);						%进行傅立叶变换得到语音信号频频
subplot(3,2,2);
f=Fs*(0:4095)/8192;
plot(f,abs(fq(1:4096)));				%画出频谱图
title('原始语音信号的频域图形');
xlabel('频率 f');
ylabel('FFT');
x_noise=randn(1,n);				%(0,1)分布的高斯白噪声
x=d+x_noise;						%加入噪声后的语音信号
subplot(3,2,3);
plot(t,x);				
title('加入噪声后');
xlabel('时间/t');
ylabel('幅值/dB');
fq=fft(x,8192);						%对加入噪声后的信号进行傅立叶变换,看其频谱变化
subplot(3,2,4);
plot(f,abs(fq(1:4096)));				%画出加入噪声后信号的频谱图
title('加入噪声后语音信号的频域图形');
xlabel('频率 f');
ylabel('FFT');
%维纳滤波
yyhxcorr=xcorr(x(1:4096));			%求取信号的信号的自相关函数
size(yyhxcorr); 
A=yyhxcorr(4096:4595);
yyhdcorr=xcorr(d(1:4096),x(1:4096));			%求取信号和理想信号的互相关函数
size(yyhdcorr);
B=yyhdcorr(4096:4595);
M=500;
yyhresult=wienerfilter(x,A,B,M);				%进行维纳滤波
yyhresult=yyhresult(300:8192+299);
subplot(3,2,5);
t = (1:8192)*T;% 时间
plot(t,yyhresult);				%画出频谱图
title('进行维纳滤波');
xlabel('时间/t');
ylabel('幅值/dB');
fq=fft(yyhresult);							%对维纳滤波的结果进行傅立叶变换,看其频谱变化
subplot(3,2,6); 
f=Fs*(0:4095)/8192;
plot(f,abs(fq(1:4096)));						%画出维纳滤波后信号的频谱图
title('经过维纳滤波后语音信号的频域图形');
xlabel('频率 f');
ylabel('FFT');

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RbJHsxT4-1575103200857)(G:\研究生\项目小组任务\笔记\第四周和第五周笔记\voice_text.bmp)]

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泸州月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值