大模型训练部署利器--开源分布式计算框架Ray原理介绍

文章详细介绍了Ray分布式计算框架的工作原理、使用方法(如remote方法和worker进程)、在Kubernetes中的应用、弹性伸缩机制以及其在机器学习中的应用。同时指出了Ray的局限性和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

Ray是什么?

如何做到分布式?

集群

remote方法

worker进程

多worker进程实现分布式

worker资源申请

如何做到弹性伸缩?

Kubernetes中的Ray

Ray使用简介

资源设置

模型组合

Ray不能做什么

参考

写在最后


本文首先介绍Ray分布式的原理,对原理有了一定认识后,具体到使用就相对简单了,因此本文只会对使用做简要介绍,最后再说一下Ray的不足。文章的目的是让大家对Ray能有基本的了解,供大家判断Ray是否适合用于解决手头的问题。

Ray是什么?

Ray是一个开源统一框架,为机器学习和大数据处理相关程序提供了用于并行处理的计算层,降低了大规模端到端机器学习工作流的开发难度。

Ray提供了在数据预处理、分布式训练、超参数调优、模型服务和强化学习几个方面的并行方法,分别对应上图的Data、Train、Tune、Serve和RLib模块,用户只需要在原有代码中新增几行代码,即可实现方法的并行操作。

同时,通过KubeRay可以将Ray程序很容易的移植到Kubernetes集群中,利用云原生生态中的基础能力对Ray任务进行更精细的管理。

如何做到分布式?

集群

Ray通常是以集群的方式部署在多台服务器上。Head node是主节点,Worker node是工作节点,上图展示了由1个Head node和2个Worker node组成的Ray集群。

remote方法

Ray任务在执行的过程中,可以根据用户在代码中的定义,判断将哪些无状态方法(Task)或者有状态类(Actor)进行分布式处理。

以方法举例,在方法上面加入一行@ray.remote装饰器,普通方法便成为了remote方法,可以被多个worker进程同时处理。并且可以指定每个worker进程所需要的资源,比如@ray.remote(num_cpus=4, num_gpus=2),指定需要worker具备4个cpu核心和2个gpu,同时可以指定小于1的资源,比如@ray.remote(num_cpus=0.5, num_gpus=0.5)。

# By adding the `@ray.remote` decorator, a regular Python function
# becomes a Ray remote function.
@ray.remote
def my_function():
    return 1

worker进程

现在介绍一下worker进程,这是帮助理解Ray工作原理的核心概念。首先要把worker进程和worker node区分开,worker node指的是服务器,而worker进程是worker node上运行的进程,一个worker node可以运行多个worker进程。

Ray v2 Architecture中如下介绍worker进程:

  1. One or more worker processes, responsible for task submission and execution. A worker process is either stateless (can be reused to execute any @ray.remote function) or an actor (can only execute methods according to its @ray.remote class). Each worker process is associated with a specific job. The default number of initial workers is equal to t

### XGBoost 机器学习框架简介 XGBoost 是一种优化的梯度提升决策树(Gradient Boosting Decision Tree, GBDT)算法的开源实现,被广泛应用于结构化数据的分类和回归任务中[^2]。其核心目标是提供高效的计算性能以及强大的预测能力。 #### 功能特点 XGBoost 的主要功能特点如下: 1. **高性能与可扩展性** XGBoost 利用了多线程并行计算技术来加速模型训练过程,从而显著提高了运行效率。此外,在 Ray 框架的支持下,XGBoost-Ray 实现了分布式计算的功能,进一步提升了大规模数据分析与建模的能力[^1]。 2. **正则化项引入** XGBoost 在传统 GBDT 基础上增加了 L1 和 L2 正则化项,有效防止过拟合现象的发生,使模型更加鲁棒。 3. **自定义损失函数支持** 用户可以根据具体需求定义自己的目标函数和评估指标,增强了灵活性和适应性。 4. **缺失值处理机制** 对于含有大量缺失值的数据集,XGBoost 提供了一种内置的方法自动寻找最佳分裂方向,无需额外预处理步骤即可获得良好效果。 5. **一致 API 设计** 类似于 Scikit-learn 的简单易用风格,XGBoost 同样采用统一接口设计原则,方便开发者快速切换不同模型或调整参数设置。 #### 使用场景 由于上述优势特性,XGBoost 广泛适用于以下几种典型应用场景: 1. **结构化表格型数据建模** 当面对具有清晰列属性关系的传统数据库表形式输入源时,无论是二元分类还是数值预测问题,都可以借助该工具完成高质量解决方案构建工作。 2. **Kaggle 数据竞赛夺冠利器** 凭借卓越表现力及其高度定制可能性,许多顶级选手都倾向于选用此方案作为参赛首选武器之一。 3. **企业内部业务分析平台搭建基础组件** 结合 PyCaret 这样的封装层后,则能极大简化日常运维操作难度,成为中小型企业部署智能化升级项目的理想选择对象[^3]。 ```python import xgboost as xgb from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # 加载波士顿房价数据集 data = load_boston() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2) # 转换为 DMatrix 格式 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # 设置超参 params = { 'objective': 'reg:squarederror', 'eval_metric': 'rmse', 'max_depth': 6, 'eta': 0.1} num_rounds = 100 bst = xgb.train(params=params, dtrain=dtrain, num_boost_round=num_rounds) # 测试集预测 preds = bst.predict(dtest) print(f'MSE: {mean_squared_error(y_test, preds)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值