一、目录
1 框架
2. 入门
3. 安装教程
4. 相关文档、案例阅读
二、实现
1 框架:Ray:将一个模型拆分到多个显卡中,实现分布式预测、训练等功能。
2. 入门 :
案例:通过ray 实现分布式部署,分布式推理服务。
参考:https://zhuanlan.zhihu.com/p/647973148?utm_id=0
文件名:test.py
pip install ray
pip install “ray[serve]”
import pandas as pd
import ray
from ray import serve
from starlette.requests import Request
@serve.deployment(ray_actor_options={"num_gpus": 2}) #两个gpu 将模型拆分,进行推理
class PredictDeployment:
def __init__(self, model_id: str):
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
)
self.tokenizer = AutoTokenizer.from_pretrained(m