大模型分布式推理ray

本文介绍了如何利用Ray框架将模型拆分到多GPU进行分布式预测和训练,通过一个实例展示了如何在星lette框架下创建并部署分布式推理服务。同时提供了安装教程和相关文档链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、目录

1 框架
2. 入门
3. 安装教程
4. 相关文档、案例阅读

二、实现

1 框架:Ray:将一个模型拆分到多个显卡中,实现分布式预测、训练等功能。
2. 入门 :
案例:通过ray 实现分布式部署,分布式推理服务。
参考:https://zhuanlan.zhihu.com/p/647973148?utm_id=0
文件名:test.py
pip install ray
pip install “ray[serve]”

import pandas as pd

import ray
from ray import serve
from starlette.requests import Request

@serve.deployment(ray_actor_options={"num_gpus": 2})        #两个gpu 将模型拆分,进行推理
class PredictDeployment:
    def __init__(self, model_id: str):
        from transformers import AutoModelForCausalLM, AutoTokenizer
        import torch

        self.model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.float16,
            device_map="auto",
        )
        self.tokenizer = AutoTokenizer.from_pretrained(m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值