语音处理:Python实现音频文件声道分离批量处理

语音处理:Python实现立体声音频的声道分离批量处理

背景


在语音处理任务中,有时需要对立体声或多声道音频文件,批量处理成单声道文件,然后送入算法模型进行处理。

这里,提供一个Python脚本实现批量分离,提高处理效率。

实现思路


编码思路

  • 采用Python的wavfile
  • 先读取多声道音频到data
  • 将data中的左右声道分别提取到list中
  • 将list数据写入新的单声道音频文件

Python代码


用前需先导入以下包:

import scipy.io.wavfile

封装代码如下:

def split_stereo(input_path, output_path):
    # default stereo
    samplerate, data = wavfile.read(input_path)
    left = []
    right = []
    for item in data:
        left.append(item[0])
        right.append(item[1])
    file_name = input_path.split('\\')[-1]
    file_name = file_name.split('.')[0]
    outfile_name = file_name + '_1ch_left.wav'
    out_path_file = os.path.join(output_path, outfile_name)
    wavfile.write(out_path_file, samplerate, np.array(left))
    # wavfile.write('right.wav', samplerate, np.array(right))

当然,有兴趣的也可以用专业音频处理软件Audition实现批量处理。

参考资料


  1. python 双声道语音分离,link
  2. 立体声音乐分离左右声道,link
  3. 采用soundfile库实现分离的方法,link
  4. 音频处理二:(左右声道分离),link
要使用Python实现基于时差的左右声道分离,可以按照以下步骤进行: 1. **读取立体声音频文件**:使用`scipy.io.wavfile`或`librosa`库读取立体声音频文件。 2. **分帧处理**:将音频信号分为多个短时帧(例如20毫秒),并应用Hamming窗。 3. **计算STFT**:对每个帧计算短时傅里叶变换(STFT)。 4. **相位差分析**:比较两路信号的相位差,确定哪些频率成分属于哪个说话人。 5. **重构音频**:根据相位差筛选出属于某个说话人的频率成分,并通过逆STFT重构音频信号。 以下是一个示例代码,展示了如何实现上述步骤: ```python import numpy as np import scipy.io.wavfile as wav import librosa import matplotlib.pyplot as plt # 读取立体声音频文件 sample_rate, audio_data = wav.read('Speaker_A_and_B_2chanr6K.wav') # 分离左右声道 left_channel = audio_data[:, 0] right_channel = audio_data[:, 1] # 参数设置 frame_length = int(sample_rate * 0.02) # 20毫秒的帧长 hop_length = frame_length // 2 # 帧移 window = 'hamming' # 计算STFT stft_left = librosa.stft(left_channel, n_fft=320, hop_length=hop_length, window=window) stft_right = librosa.stft(right_channel, n_fft=320, hop_length=hop_length, window=window) # 获取相位差 phase_diff = np.angle(stft_left / stft_right) # 定义阈值,用于区分两个说话人的信号 threshold = 0.1 # 根据相位差筛选频率成分 mask_a = (phase_diff > threshold).astype(float) mask_b = (phase_diff < -threshold).astype(float) # 应用掩码 stft_a = stft_left * mask_a stft_b = stft_right * mask_b # 逆STFT重构音频 audio_a = librosa.istft(stft_a, hop_length=hop_length, window=window) audio_b = librosa.istft(stft_b, hop_length=hop_length, window=window) # 保存分离后的音频 wav.write('speaker_a.wav', sample_rate, audio_a.astype(np.int16)) wav.write('speaker_b.wav', sample_rate, audio_b.astype(np.int16)) print("音频分离完成!") ``` ### 解释 1. **读取音频文件**:使用`scipy.io.wavfile`读取立体声音频文件,并分离左右声道。 2. **参数设置**:定义帧长(20毫秒)和帧移(帧长的一半),以及窗口函数(Hamming窗)。 3. **计算STFT**:使用`librosa.stft`计算左右声道的STFT。 4. **相位差分析**:计算左右声道的相位差,并设定一个阈值来区分两个说话人的信号。 5. **筛选频率成分**:根据相位差生成掩码,并应用于STFT结果。 6. **逆STFT重构音频**:使用`librosa.istft`将筛选后的STFT结果转换回时域信号,并保存分离后的音频文件。 这个示例代码提供了一个基本框架,实际应用中可能需要进一步优化和调整参数以获得更好的分离效果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值