深度学习:试卷自动批改方案探索

一、引言

随着教育信息化的快速发展,传统人工批改试卷的方式逐渐难以满足大规模考试和教学反馈的需求。深度学习凭借强大的模式识别和语义理解能力,为试卷自动批改带来了新的解决方案。从客观题的精准识别到主观题的智能评估,深度学习模型在试卷批改领域的应用,不仅能大幅提高批改效率,还能为教学提供更科学、全面的分析数据。本文将详细记录深度学习模型在试卷自动批改项目中的开发过程、实践经验、技术要点总结,希望能为相关领域的研究和应用提供参考。

二、开发过程

(一)数据收集与预处理

数据采集:与多所学校、教育机构合作,收集涵盖小学、中学、高中不同学科的试卷,包括语文、数学、英语、物理、化学等。收集的试卷类型包含单元测试卷、期中期末试卷、模拟考试卷等,确保数据的多样性和代表性。同时,获取对应的标准答案及教师批改后的试卷图像,为后续的标注和训练提供依据。

数据标注

客观题标注:对于选择题、判断题等客观题,标注正确答案选项、填涂区域位置以及考生的实际填涂内容。采用矩形框标注填涂区域,并记录每个选项对应的坐标信息。

主观题标注:针对简答题、论述题、作文等主观题,除标注标准答案外,还对试卷上考生的作答区域进行精确标注。对于作文,标注段落划分、关键语句位置等信息;对于简答题和论述题,标注得分点和答案要点对应的区域。

数据清洗:去除模糊不清、损坏严重无法辨认的试卷图像,以及标注错误、不完整的数据。对图像中存在的噪声、污渍等进行滤波处理,使用高斯滤波、中值滤波等算法提高图像质量。

数据增强:为扩大数据集规模,对试卷图像进行多种数据增强操作。包括随机旋转、翻转、缩放、亮度调整、对比度调整等,模拟不同的扫描和拍摄条件。同时,对主观题文本数据进行同义词替换、句子重组等操作,增加数据的多样性。

(二)模型选择与构建

客观题批改模型

采用卷积神经网络(CNN)作为基础架构,例如经典的 ResNet(残差网络)或 VGGNet。CNN 能够自动提取图像的局部特征,适合处理客观题填涂区域的图像识别任务。在模型结构中,通过多个卷积层和池化层提取图像的特征,最后连接全连接层进行分类预测,判断考生的填涂答案是否正确。

为提高模型对不同填涂风格和噪声的鲁棒性,在模型训练过程中,将数据增强后的图像输入网络进行训练,调整模型参数,使模型能够适应各种实际场景下的客观题填涂图像。

主观题批改模型

对于主观题批改,选用 Transformer 架构的模型,如 BERT(Bidirectional Encoder Representations from Transformers)或 GPT(Gen

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毒果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值