data_matrix是 m×n 的矩阵,label_matrix是 m×1 的矩阵,h是预测得到的矩阵,error是 m×1 的预测与标签的误差矩阵,weights是 n×1 的权值矩阵,学习率为alpha
那么logistic regression的权值更新可写为:
error = h - label_matrix
weights = weights - alpha * data_matrix.transpose()*error
data_matrix是 m×n 的矩阵,label_matrix是 m×1 的矩阵,h是预测得到的矩阵,error是 m×1 的预测与标签的误差矩阵,weights是 n×1 的权值矩阵,学习率为alpha
那么logistic regression的权值更新可写为:
error = h - label_matrix
weights = weights - alpha * data_matrix.transpose()*error