Logistic Regression代价函数权值更新的代码实现

data_matrix是  m×n 的矩阵,label_matrix是 m×1 的矩阵,h是预测得到的矩阵,error是 m×1 的预测与标签的误差矩阵,weights是 n×1 的权值矩阵,学习率为alpha

那么logistic regression的权值更新可写为:

error = h - label_matrix

weights = weights - alpha * data_matrix.transpose()*error

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值