算法:有监督-关联规则

关联规则(Association Rule) 是反映事物与事物间相互的依存关系和关联性的一个分析方法。如果两个或多个事物间存在一定的关联关系,则其中一个事物能够通过其他事物预测到。
最常见的场景就是购物篮分析(MarketBasket)。通过分析顾客购物篮中的不同商品之间的关系,来分析顾客的购买习惯。经典案例就是啤酒与尿布。

常见的关联规则算法有:

  • Apriori算法
  • ECLAT算法

例:根据某超市的购物篮信息,分析顾客的购物习惯,制定货物摆放或者捆绑销售策略。

流水购买商品
1001A,C,D
1002B,C,E
1003A,B,C,E
1004B,E

首先设定最小支持度为50%,最小置信度为50%(根据实际情况设定)
确定1项频繁项集

项集支持度
{A}50%
{B}75%
{C}75%
{D}25%
{E}75%

{D}不满足预先设定的最小支持度,把它淘汰掉
结果:{A}:50%,{B}:75%,{C}:75%,{E}:75%

确定2项频繁项集

项集支持度
{A,B}25%
{A,C}50%
{A,E}25%
{B,C}50%
{B,E}75%
{C,E}50%

{A,B}、{A,E}不满足预先设定的最小支持度,把它们淘汰掉
结果:{A,C}:50%,{B,C}:50%,{B,E}:75%,{C,E}:50%

确定3项频繁项集

组合项集支持度
{A,C}+{B,C}{A,B,C}25%
{A,C}+{B,E}{A,B,C,E}X
{A,C}+{C,E}{A,C,E}25%
{B,C}+{B,E}{B,C,E}50%
{B,C}+{C,E}{B,C,E}
{B,E}+{C,E}{B,E,C}

{A,B,C}、{A,B,C,E}、{A,C,E}都不满足预先设定的最小支持度,淘汰它们
结果:{B,C,E}:50%

确定关联规则: 非空子集:{B},{C},{E},{B,C},{B,E},{C,E}

规则支持度置信度解读
B->C75%66.7%有75%的人买了B,其中66.7%的人也买了C
B->E75%100%
B->CE75%66.7%
C->E75%66.7%
C->BE75%100%
E->BC75%66.7%
BC->E50%100%
BE->C75%66.7%
CE->B50%100%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

分数不是数

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值