numpy.stack(arrays, axis=0)
沿着新轴连接数组的序列。
axis参数指定新轴在结果尺寸中的索引。例如,如果axis=0
,它将是第一个维度,如果axis=-1
,它将是最后一个维度。
- 参数: 数组:array_like的序列每个数组必须具有相同的形状。axis:int,可选输入数组沿其堆叠的结果数组中的轴。
- 返回: 堆叠:ndarray堆叠数组比输入数组多一个维。
上面是官方给出的解释,很难理解。
我们先从增加维度说起。
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> a.shape
(3,)
>>> b.shape
(3,)
>>> np.stack((a, b), axis=0).shape
(2, 3)
>>> np.stack((a, b), axis=1).shape
(3, 2)
我先说一说这里(2,3)
和(3,2)
中的2
是怎么来的:因为有a
和b
两个array
。如果这里我们增加一个c= np.array([3, 4, 5])
,那么这里我们改变原来的np.stack
就会变成下面这样:
>>> c = np.array([3, 4, 5])
>>> np.stack((a, b, c), axis=0).shape
(3, 3)
>>> np.stack((a, b, c), axis=1).shape
(3, 3)
那么因为这里是a,b,c
三个array
,所以这里2
变成了3
接着说说这个axis
参数的意义,我们可以理解这里的axis
就是要增加哪一个维度,比如说这里的axis=0
,就是增加第一维度,所以这里的(2,3)
中的2
在第一个位置。axis=1
,就是增加第二维度,所以这里的(3,2)
中的2
在第二个位置。
我现在举一个稍微复杂的例子
>>> a = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
>>> b = np.array([[4, 5, 6], [4, 5, 6], [4, 5, 6]])
>>> a.shape
(3, 3)
>>> b.shape
(3, 3)
>>> np.stack((a, b), axis=0).shape
(2, 3, 3)
>>> np.stack((a, b), axis=1).shape
(3, 2, 3)
>>> np.stack((a, b), axis=2).shape
(3, 3, 2)
这里的2
就是指的a
和b
,而2
放在什么位置是根据axis
来确定的。
接着说一下矩阵的坐标
a a的元素对应的坐标
[1 2 3] (0,0) (0,1) (0,2)
[1 2 3] (1,0) (1,1) (1,2)
[1 2 3] (2,0) (2,1) (2,2)
很好理解。
接着以np.stack((a, b), axis=1)
为例子
>>> np.stack((a, b), axis=1).shape
(3, 2, 3)
>>> np.stack((a, b), axis=1)
array([[[1, 2, 3],
[4, 5, 6]],
[[1, 2, 3],
[4, 5, 6]],
[[1, 2, 3],
[4, 5, 6]]])
原来我们a[0][0]=1
,现在中间加上一个维度(因为这里axis=1
),就变成了a[0][0][0]=1
,注意这里为什么中间是0
,因为np.stack((a, b), axis=1)
中,a
在b
的前面。同理
a a的元素对应的坐标
[1 2 3] (0,0,0) (0,0,1) (0,0,2)
[1 2 3] (1,0,0) (1,0,1) (1,0,2)
[1 2 3] (2,0,0) (2,0,1) (2,0,2)
那么b[0][0]=4
,因为np.stack((a, b), axis=1)
中,b
在a
的后面。所以b[0][1][0]=4
b b的元素对应的坐标
[4 5 6] (0,1,0) (0,1,1) (0,1,2)
[4 5 6] (1,1,0) (1,1,1) (1,1,2)
[4 5 6] (2,1,0) (2,1,1) (2,1,2)
接着将对应坐标的数组合,就得到了新的array
元素对应的坐标
array([[[1, 2, 3], (0,0,0) (0,0,1) (0,0,2)
[4, 5, 6]], (0,1,0) (0,1,1) (0,1,2)
[[1, 2, 3], (1,0,0) (1,0,1) (1,0,2)
[4, 5, 6]], (1,1,0) (1,1,1) (1,1,2)
[[1, 2, 3], (2,0,0) (2,0,1) (2,0,2)
[4, 5, 6]]]) (2,1,0) (2,1,1) (2,1,2)
还有一个更加简单的理解方式(堆叠)
对于axis=1
,就是横着切开,对应行横着堆

对于axis=2
,就是竖着切开,对应行竖着堆

对于axis=0
,就是不切开,两个堆一起。
就是这么的简单_!
觉得不错,点个赞吧b( ̄▽ ̄)d