如果序列 X_1, X_2, ..., X_n
满足下列条件,就说它是 斐波那契式 的:
n >= 3
- 对于所有
i + 2 <= n
,都有X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列,找到 A
中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
示例 1:
输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。
示例 2:
输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。
提示:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
- (对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)
解题思路
因为这个问题的时间复杂度要求不高,所以我们可以想到通过暴力法解决这个问题。我们可以通过两个循环,找到斐波那契式子序列
的前两个数,然后找后面的数是不是出现在A
中即可(所以我们可以使用set
)。
class Solution:
def lenLongestFibSubseq(self, A: List[int]) -> int:
S = set(A)
n, res = len(A), 0
for i in range(n):
for j in range(i+1, n):
x, y = A[j], A[i] + A[j]
l = 2
# <- add prune
while y in S:
x, y = y, x+y
l += 1
res = max(res, l)
return res if res >= 3 else 0
这种解法当然不是最好的,要怎么优化呢?我们这里有一个剪枝操作,我们注意到这是一个递增的数组,那么实际上我们可以不用立即判断y
是不是在S
中
if (res - 2)*x >= A[-1]: break
我们也可以通过动态规划的方法,首先我们定义函数f(i, j)
表示以i, j
结尾的斐波那契数列的长度,那么
- f ( i , j ) = ( f ( j − i , i ) + 1 ) o r 2 f(i, j)=(f(j-i,i)+1)\ or\ 2 f(i,j)=(f(j−i,i)+1) or 2
class Solution:
def lenLongestFibSubseq(self, A: List[int]) -> int:
dp = collections.defaultdict(int)
S = set(A)
for j in range(len(A)):
for i in range(j):
if A[j] - A[i] < A[i] and A[j] - A[i] in S:
dp[A[i], A[j]] = dp.get((A[j] - A[i], A[i]), 2) + 1
return max(dp.values() or [0])
reference:
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!