Leetcode 873:最长的斐波那契子序列的长度(超详细的解法!!!)

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。

(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。

示例 2:

输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= A.length <= 1000
  • 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
  • (对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)

解题思路

因为这个问题的时间复杂度要求不高,所以我们可以想到通过暴力法解决这个问题。我们可以通过两个循环,找到斐波那契式子序列的前两个数,然后找后面的数是不是出现在A中即可(所以我们可以使用set)。

class Solution:
    def lenLongestFibSubseq(self, A: List[int]) -> int:
        S = set(A)
        n, res = len(A), 0
        for i in range(n):
            for j in range(i+1, n):
                x, y = A[j], A[i] + A[j]
                l = 2
                # <- add prune
                while y in S:
                    x, y = y, x+y
                    l += 1
                res = max(res, l)
        return res if res >= 3 else 0

这种解法当然不是最好的,要怎么优化呢?我们这里有一个剪枝操作,我们注意到这是一个递增的数组,那么实际上我们可以不用立即判断y是不是在S

if (res - 2)*x >= A[-1]: break

我们也可以通过动态规划的方法,首先我们定义函数f(i, j)表示以i, j结尾的斐波那契数列的长度,那么

  • f ( i , j ) = ( f ( j − i , i ) + 1 )   o r   2 f(i, j)=(f(j-i,i)+1)\ or\ 2 f(i,j)=(f(ji,i)+1) or 2
class Solution:
    def lenLongestFibSubseq(self, A: List[int]) -> int:
        dp = collections.defaultdict(int)
        S = set(A)
        for j in range(len(A)):
            for i in range(j):
                if A[j] - A[i] < A[i] and A[j] - A[i] in S:
                    dp[A[i], A[j]] = dp.get((A[j] - A[i], A[i]), 2) + 1
        return max(dp.values() or [0])

reference:

https://leetcode.com/problems/length-of-longest-fibonacci-subsequence/discuss/152343/C%2B%2BJavaPython-Check-Pair

我将该问题的其他语言版本添加到了我的GitHub Leetcode

如有问题,希望大家指出!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值