附近的家居城促销,你买回了一直心仪的可调节书架,打算把自己的书都整理到新的书架上。
你把要摆放的书 books
都整理好,叠成一摞:从上往下,第 i
本书的厚度为 books[i][0]
,高度为 books[i][1]
。
按顺序 将这些书摆放到总宽度为 shelf_width
的书架上。
先选几本书放在书架上(它们的厚度之和小于等于书架的宽度 shelf_width
),然后再建一层书架。重复这个过程,直到把所有的书都放在书架上。
需要注意的是,在上述过程的每个步骤中,摆放书的顺序与你整理好的顺序相同。 例如,如果这里有 5 本书,那么可能的一种摆放情况是:第一和第二本书放在第一层书架上,第三本书放在第二层书架上,第四和第五本书放在最后一层书架上。
每一层所摆放的书的最大高度就是这一层书架的层高,书架整体的高度为各层高之和。
以这种方式布置书架,返回书架整体可能的最小高度。
示例:

输入:books = [[1,1],[2,3],[2,3],[1,1],[1,1],[1,1],[1,2]], shelf_width = 4
输出:6
解释:
3 层书架的高度和为 1 + 3 + 2 = 6 。
第 2 本书不必放在第一层书架上。
提示:
1 <= books.length <= 1000
1 <= books[i][0] <= shelf_width <= 1000
1 <= books[i][1] <= 1000
解题思路
典型的动态规划问题啊。我们思考一下子问题,我们定义一个函数f(i)
表示放置前i
本书的最小高度,那么怎么然这个高度尽量小呢?很容易想到,我们当前的书books[i]
要尽量和前面的书放到一排呀!这就是子问题,到底该怎么放呢?知道和前面书的宽度加起来不超过shelf_width
,那么我们就可以放。那么转移方程
- f ( i ) = m i n ( f ( j ) + h ) f(i)=min(f(j)+h) f(i)=min(f(j)+h)
其中j
表示books[j+1:i+1]
这几本书可以放到一排,h
则表示这些书的最大高度。
class Solution:
def minHeightShelves(self, books: List[List[int]], shelf_width: int) -> int:
n = len(books)
mem = [float("inf")] * (n + 1)
mem[0] = 0
for i in range(1, n + 1):
w, h = 0, 0
for j in range(i-1, -1, -1):
w += books[j][0]
h = max(h, books[j][1])
if w > shelf_width:
break
mem[i] = min(mem[i], mem[j] + h)
return mem[-1]
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!