「日常训练」 Longest Run on a Snowboard (UVA-10285)

题意

其实就一条二维的LIS,但是还是做的一愣一愣的,多努力。
考虑 dp[i][j] d p [ i ] [ j ] 为从(i,j)出发的二维LIS的最大值,那么 dp[i][j]=max{dp[idi[k]][jdj[k]]+1} d p [ i ] [ j ] = m a x { d p [ i − d i [ k ] ] [ j − d j [ k ] ] + 1 } ,取dp值时要求严格递减。否则值为1。

分析

#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define fi first
#define se second
#define ZERO(x) memset((x), 0, sizeof(x))
#define ALL(x) (x).begin(),(x).end()
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define per(i, a, b) for (int i = (a); i >= (b); --i)
#define QUICKIO                  \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0);
using namespace std;
using ll = long long;
using ull = unsigned long long;
using pi = pair<int, int>;
using pii = pair<int, pi>;

template<typename T>
T
read()
{
    T tmp; cin>>tmp;
    return tmp;
}

int arr[105][105],dp[105][105],n,m;
const int dx[]={0,1,0,-1},
          dy[]={1,0,-1,0};

int
solve(int x,int y)
{
    //cout<<x<<" "<<y<<endl;
    if(dp[x][y]!=-1) return dp[x][y];
    else
    {
        int tmpans=1;
        rep(i,0,3)
        {
            int tx=x+dx[i],
                ty=y+dy[i];
            if(tx>=1 && tx<=n && ty>=1 && ty<=m
            && arr[tx][ty]<arr[x][y])
            {
                tmpans=max(tmpans,solve(tx,ty)+1);
            }
        }
        return dp[x][y]=tmpans;
    }
}

int
main()
{
    int T; cin>>T;
    while(T--)
    {
        string p; cin>>p>>n>>m;
        rep(i, 1, n)
            rep(j, 1, m)
                { cin>>arr[i][j]; }
        memset(dp,-1,sizeof(dp));
        int ans=-1;
        rep(i, 1, n)
            rep(j, 1, m)
            {
                if(dp[i][j]==-1)
                    dp[i][j]=solve(i,j);
                ans=max(ans,dp[i][j]);
            }
        cout<<p<<": "<<ans<<endl;

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值