认识PyTorch2.0及安装过程

PyTorch是一个用于深度学习的张量库,以其动态计算图和灵活性著称。PyTorch2.0带来了torch.compile等功能,显著提升了性能,尤其是在GPU上的训练速度。文章还详细介绍了PyTorch的安装步骤,包括对Windows和Python版本的要求,以及使用pip和conda的安装命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是PyTorch

在这里插入图片描述
PyTorch 是一个优化的张量库,用于使用 GPU 和 CPU 进行深度学习。它提供了一个非常灵活的、高性能的深度学习平台,允许用户使用Python代码来定义、训练和部署各种深度学习模型,如神经网络、卷积神经网络、递归神经网络等。

PyTorch的一个主要特点是其动态计算图。相比于其他框架,如TensorFlow和Keras,PyTorch的计算图可以根据数据和模型结构的变化进行调整。这意味着,可以使用Python控制结构(如循环和条件语句)来构建动态计算图,从而使得模型的开发过程更加灵活和直观。

此外,PyTorch还提供了丰富的工具和库,例如自动微分、优化器、损失函数等,以帮助用户更轻松地构建和训练深度学习模型。

二、PyTorch 2.0

今年3月PyTorch 2.0稳定版正式发布,延续了之前的 eager 模式,同时从根本上改进了 PyTorch 在编译器级别的运行方式。PyTorch 2.0 能为「Dynamic Shapes」和分布式运行提供更快的性能和更好的支持。
PyTorch 2.0 官宣了一个重要特性 —— torch.compile,这一特性将 PyTorch 的性能推向了新的高度,并将 PyTorch 的部分内容从 C++ 移回 Python。torch.compile 是一个完全附加的(可选的)特性,因此 PyTorch 2.0 是 100% 向后兼容的。
支撑 torch.compile 的技术包括研发团队新推出的 TorchDynamo、AOTAutograd、PrimTorch 和 TorchInductor。

TorchDynamo:使用 Python Frame Evaluation Hooks 安全地捕获 PyTorch 程序,这项重大创新是 PyTorch 过去 5 年来在安全图结构捕获方面的研发成果汇总;

AOTAutograd:重载 PyTorch 的 autograd 引擎,作为一个跟踪 autodiff,用于生成 ahead-of-time 向后跟踪;

PrimTorch:将约 2000 多个 PyTorch 算子归纳为一组约 250 个原始算子的闭集,开发人员可以将其作为构建完整 PyTorch 后端的目标。这大大降低了编写 PyTorch 功能或后端的流程;

TorchInductor:是一种深度学习编译器,可为多个加速器和后端生成快速代码。对于 NVIDIA GPU,它使用 OpenAI Triton 作为关键构建块。

TorchDynamo、AOTAutograd、PrimTorch 和 TorchInductor 是用 Python 编写的,并支持 dynamic shapes(无需重新编译就能发送不同大小的向量ÿ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MR. Ben AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值