本周是2025年8月的最后一个周,进入2024年以后,大模型技术的发展可以用一日千里来形容。各种大模型的出现,文字,视频,图片,语音等等。衍生出针对不同行业和不同场景的大模型方案。同样,博主也逐渐开始针对工业检测领域,开发行业大模型。距离上次的博客和模型更新已经过去了快半年,主要原因是博主工作生活太忙。最近利用下班时间,做一些更新。预告博主会在近期,发布针对工业检测7B的大模型软件,之前1.5B的模型继续保留,建议大家更新后切换成更大的模型方案,效果提升明显。
本次更新主要对最近大模型的开发,做一些总结。
第一点:大模型的知识储备>单个人工的知识储备
第二点:大模型对数据的特征提取能力>人类已知的数据特征提取方法
第三点:目前人工对所有模型的使用,还停留的数据检索阶段
以上三点的支撑,主要基于个人开发过程中遇到的问题,并解决问题,做出的一些总结。有一定的引导意义,但是不一定绝对。从2017年深度学习方法被大家知晓以后,模型经历了,卷积网络,深度卷积网络,大模型。三个不同的阶段,技术一致在朝更大更深的网络结构发展。是为了让模型有更加深的数据理解能力,从而提取更加精准的数据特征。
同样在技术发展过程中,应用也在不断的跟进。工业行业比较多的是分类,分割,和目标检测。这些方法都有一个共性方法,就是微调。
微调:微调的本质是,基于大数据训练和总结的预训练模型,修改部分权重参数的,完成对单一行业的模型定制。在很多实践的验证下,不用修改预训练模型的权重,在预训练模型后端加入一个回归的小模型,效果提升更明显。这也体现出模型的结果输出,实际上是一种特征检索,把图片数据转化为特征数据,并针对不同特征,输出不同的结果。同样反之,如果不同的数据,拥有同样的特征,那输出的结果也会一样

最低0.47元/天 解锁文章
1255

被折叠的 条评论
为什么被折叠?



