★动态规划(DP算法)详解

什么是动态规划:动态规划_百度百科

内容太多了不作介绍,重点部分是无后效性,重叠子问题,最优子结构。

d6eac15165f240f8999e08b97665cf8f.png问S->P1和S->P2有多少种路径数,毫无疑问可以先从S开始深搜两次,S->P1和S->P2找出所有路径数,但是当这个图足够大,那就会超时。

动态规划旨在用空间换时间,我们可以发现S->P2的路上,实际上重复计算了S->P1,然后再去计算P1->P2,如果我们第一次计算S->P1的时候,保留了P1点的路径数,那么就不用再次计算S->P1了。

无后效性:未来的状态不会影响过去的状态,如果我在P1->P2的时候,S->P1多了一条路出来,那么先前保留的路径数就是错误的。

tip:下面的例题讲解并不是特别好,还未修正,建议先拉到最下面看20230504 Update.


经典的数塔问题也是dp算法的入门问题之一

假设你有这么一个数塔,你的目标是求最底层到最高层,求出最大路径和

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAenpj5aSn6a2U546L,size_20,color_FFFFFF,t_70,g_se,x_16

比如3->7->2->9这个路径,他的路径和是3+7+2+9

不难发现如果要求到9的最大路径和,首先要求出他前一层的最大路径

核心代码dp[i][j]=max(dp[i-1][j],dp[i-1][j+1])+a[i][j]

dp[i][j](9的最大路径和)

a[i][j](9自己)

dp[i-1][j](前一层5的最大路径和)dp[i-1][j+1](前一层2的最大路径和)

在前一层的最大路径和取大的那一个


例题:[NOIP2005 普及组] 采药 - 洛谷

e56aa3aa628848259cb937a08de76309.png

f843d45d8cde4de7b4ea4d60108828e2.png

这道题输入这么少也不用scanf了,直接上cin加上小优化

inline void scan(){
    ios::sync_with_stdio(false);//解除与scanf和cout的同步,具体体现在缓冲区
    cin.tie(nullptr),cout.tie(nullptr);//可以加快一点速度
    cin>>T>>m;
    for(int i=1;i<=m;++i)
        cin>>t[i]>>v[i];
}

很明显就是各个最优子问题的问题,要取到最多的价值,必然前一个状态也是最多的。

所以考虑定义问题的全部基础属性,每个草药有价值和对应所需的时间,目标是最大价值。

作出以下定义

定义dp[i][j]为采前i朵,消耗时间j内的最大价值
    
不难得出以下两种情况
1.当前时间可以采走这支草药
  (1)如果要采这支采药,那先前状态就要预留j-t[i]时间来满足定义
  (2)如果不采那最大价值就是先前状态dp[i-1][j]
  因为不清楚哪一种情况更好,但是我们只需要最大值,所以max
  综上dp[i][j]=max(dp[i-1][j],dp[i-1][j-t[i]]+v[i]);

2.当前时间不够采走这支草药,采不了那就不采,继承先前状态.  
  即dp[i][j]=d[i-1][j]

或者说延续用上文的想法,n支草药价值最大我不知道
如果只有1支草药呢?,那我是不是就知道了
1支草药知道了,那我2支草药是不是也知道了

然后...直接从基础状态循环到结束,即从第一支草药开始循环。

显而易见不能从采最后几朵开始往前判断,前面状态都不清楚,怎么可以从后面开始。

AC代码

#include <bits/stdc++.h>
using namespace std;

int T,m,t[101],v[101],dp[101][1001];
int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr),cout.tie(nullptr);
    cin>>T>>m;
    for(int i=1;i<=m;++i)
        cin>>t[i]>>v[i];
    for(int i=1;i<=m;++i){
        for(int j=1;j<=T;++j){
            if(j>=t[i])dp[i][j]=max(dp[i-1][j],dp[i-1][j-t[i]]+v[i]);
            else dp[i][j]=dp[i-1][j];
        }
    }
    cout<<dp[m][T];
    return 0;
}

这道题还可以接着优化,因为不难发现dp[][]的一维空间始终是在dp[i]和dp[i-1]范围内
也就是说我们其实可以舍弃这一维来节约很大范围的空间。

dp代码

    for(int i=1;i<=m;++i)
        for(int j=T;j>=t[i];j--)
            dp[j]=max(dp[j-t[i]]+v[i],dp[j]);

内部循环必须从大到小,因为先前是应用了i-1先前状态去得出i状态,但是此处舍去了一维之后就会导致两者状态都会出现在这个小小的一维数组里面。

7f69dc1f7a434ace919173e82497844c.png

比如说用线段来表示所有情况,蓝色的得出了红色的状态。

但是如果我只剩下了一条线段呢?

b986bee879174438a3cae9d4298954ec.png

 如果中间被前面先修改了,那么后面要更新状态的时候用的就是红色,而不是我们所需要的蓝色。

所以只能从后往前去推状态才能保证我们所需要的一直是蓝色,而不会被更新成红色。


发现了吧,重点在于找出继承状态(递推式),比如定义的是前n个人,而不是任意n个人,这样n-1和n的区别就在于多了一个人,只要让先前状态抽出能满足多一个人的情况,那就是后者的状态。

例题:5 倍经验日 - 洛谷

b0782c7e2caf480cae6f7f3ecf7dd4ec.png

09856a1b036949339caa969f3486327e.png

 和上面那道题基本没有什么区别,定义所有相关的基础态

定义dp[i][j]为前i个人 用j个药 可以获得的最大经验值

然后就可以得出递推式

    for(int i=1;i<=n;++i)
        for(int j=1;j<=x;++j)
            if(j>=use[i])
                dp[i][j]=max(dp[i-1][j]+lose[i],dp[i-1][j-use[i]]+win[i]);
            else
                dp[i][j]=dp[i-1][j]+lose[i];

如果能打过,那么我可以选择打或者不打
如果打不过,那只能不打

但是这道题有一个注意点是,J可以从0开始,因为存在不用药就可以打过的情况,所以先初始化不用药的情况。

初始化

    for(int i=1;i<=n;++i)
        if(use[i]==0)
            dp[i][0]=dp[i-1][0]+win[i];
        else
            dp[i][0]=dp[i-1][0]+lose[i];

AC代码

#include <bits/stdc++.h>
using namespace std;
const int MAXN=1e3+1;

long long n,x,win[MAXN],lose[MAXN],use[MAXN],dp[MAXN][MAXN];
//dp[i][j]前i个人,使用j个药,能获得的最大经验值
int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr),cout.tie(nullptr);
    cin>>n>>x;
    for(int i=1;i<=n;++i){
        cin>>lose[i]>>win[i]>>use[i];
    }

    for(int i=1;i<=n;++i)
        if(use[i]==0)
            dp[i][0]=dp[i-1][0]+win[i];
        else
            dp[i][0]=dp[i-1][0]+lose[i];
    for(int i=1;i<=n;++i)
        for(int j=1;j<=x;++j)
            if(j>=use[i])
                dp[i][j]=max(dp[i-1][j]+lose[i],dp[i-1][j-use[i]]+win[i]);
            else
                dp[i][j]=dp[i-1][j]+lose[i];
    cout<<dp[n][x]*5;
    return 0;
}
很明显这道题i和i-1也是滚动使用的
不过n的范围不是很大,所以不考虑优化

例题:疯狂的采药 - 洛谷

和上上题采药的区别就是,每个药可以无限采

每条线的含义都是一样的,也就是每个药都只能采一次。

7f69dc1f7a434ace919173e82497844c.png

这道题每个药都可以无限采,也就是说同一行之间也要去迭代所有情况

78ba15c6071344c0b40afea0ec02af41.png

上上题里面发现了,一维dp一定要逆序时间才能得出不迭代自己的状态,那么这道题正序迭代即可。

AC代码

#include <bits/stdc++.h>
using namespace std;
const int MAXM=1e4+1;
const int MAXT=1e7+1;

int T,m,t[MAXM],v[MAXM];
long long dp[MAXT];

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr),cout.tie(nullptr);
    cin>>T>>m;
    for(int i=1;i<=m;++i){
        cin>>t[i]>>v[i];
    }
    for(int i=1;i<=m;++i){
        for(int j=t[i];j<=T;++j){
            dp[j]= max(dp[j],dp[j-t[i]]+v[i]);
        }
    }
    cout<<dp[T];
    return 0;
}

j一定要从t[i]开始,不然下标要越界了。

如果要写出二维dp首先要改变定义,因为一个是只能用一次,一个是无限用,递推式必然不一样

定义dp[i][j]为采前i朵(无限采),消耗时间j内的最大价值
    
不难得出以下两种情况
1.当前时间可以采走这支草药
  (1)继承先前状态
  (2)迭代自己
  综上dp[i][j]=max(dp[i-1][j],dp[i][j-t[i]]+v[i]);
                                注意此处是i,不是i-1

2.当前时间不够采走这支草药,采不了那就不采,继承先前状态.  
  即dp[i][j]=d[i-1][j]

20230504 Update.

在隐隐约约或者分析出当前做的题目是dp题目的时候,dp题目的做法可以采取以下两种方式。

第一种:

1. 分析题目,提取关键。

2. 用数学语言表达问题。

3. 定状态转移方程。

4. 初始化。

5. 循环求解。

第二种:

1. 直接分析答案可能和哪些属性有关联。

2. 定状态转移方程。

3. 初始化。

4. 循环求解。

如果能用第一种分析出来那肯定是最好的,有了数学公式干什么都方便。

看例题。

[NOIP2012 普及组] 摆花 - 洛谷

因为本蒟蒻是蒟蒻(叉腰),所以直接用第二种方法。

可以发现摆花方案只和下面几种属性有关:
1. 花的种类

2. 花的数量,以及总数要小于一个限定数 -> 花的总数

3. 花的顺序

尝试做出定义 f[i][j] 为用上前 i 种花,且到当前为止已经用了 j 盆花的所有方案数。

当我们正序迭代这个式子的时候,可以发现 3. 花的顺序 这个属性被隐含解决了。

即这个定义目前看来还是可行的。

根据定义易得:f[i][j]=\sum_{k=j-a[i]}^j{f[i-1][k]},其中 1<=j<=m (不管他到现在最多能用多少,直接暴力枚举)。

初始化则为一种花都不用,一盆花都没有,即 f[i][0]=1 。其中 0<=i<=n 。

出现了 k=j-a[i] 所以循环的时候要注意下标越界,判断 k>=0 。

AC代码

#include <bits/stdc++.h>
using namespace std;
const int MOD=1e6+7,N=101;

int n,m,f[N][N],a[N];

int main(){
    cin>>n>>m;
    for(int i=1;i<=n;++i)
        cin>>a[i];

    for(int i=0;i<=n;++i)
        f[i][0]=1;
    for(int i=1;i<=n;++i)
        for(int j=1;j<=m;++j)
            for(int k=j-a[i];k<=j;++k)
                if(k>=0)f[i][j]=(f[i][j]+f[i-1][k])%MOD;
    cout<<f[n][m];
    return 0;
}

例题:[NOIP2008 普及组] 传球游戏 - 洛谷

<think>嗯,用户想了解动态规划算法的原理、实现和应用。首先,我需要回忆动态规划的基本概念。根据引用[2],动态规划适用于有重叠子问题和最优子结构的问题。那什么是重叠子问题呢?比如斐波那契数列,计算fib(5)需要多次计算fib(3),这时候重复计算就可以通过存储中间结果来优化。最优子结构应该是说大问题的最优解包含子问题的最优解,比如最短路径问题。 接下来是原理部分,用户可能想知道动态规划的核心思想。引用[3]提到动态规划通过分解问题,保存中间结果避免重复计算。需要解释状态和状态转移方程,这部分在引用[1]里也有提到,状态转移方程是关键,比如LCS问题中的不同情况处理。 实现方法的话,通常分为自顶向下和自底向上。自顶向下是递归加记忆化,而自底向上是迭代填表。比如斐波那契数列,递归会有很多重复,用数组存储已计算的值可以优化。引用[4]中的例子可能涉及状态转移方程的具体应用,比如最小花费问题。 应用场景方面,动态规划常见于背包问题、最长公共子序列、最短路径等。引用[3]提到Dijkstra算法也是动态规划的一种,这可能是个有趣的例子,但通常Dijkstra被归类为贪心算法,可能需要进一步确认。另外,股票买卖问题也是经典DP应用。 用户可能还希望了解动态规划的优缺点,比如时间复杂度的优化和空间复杂度可能较高的问题。比如,斐波那契数列用DP可以将指数时间降到线性,但需要O(n)空间,不过可以进一步优化到O(1)。 需要确保回答结构清晰,分点解释原理、步骤、实现方法和应用场景。同时,生成的相关问题要覆盖用户可能进一步询问的方向,比如步骤中的关键点或优化技巧。还要注意引用正确的文献,比如引用[2]关于重叠子问题和最优子结构的定义,引用[3]中的状态转移方程例子。 最后,检查是否符合用户的要求:使用中文,LaTeX格式正确,生成相关问题,引用标识正确。例如,数学公式用$...$或$$...$$,代码块用正确的语法,确保没有用户不可见的指令出现在回答中。</think>### 动态规划DP算法详解 #### 一、基本原理 动态规划算法的核心思想是**将复杂问题分解为重叠子问题,并通过保存中间计算结果避免重复计算**,从而提高效率[^2]。其适用条件包括: 1. **最优子结构**:大问题的最优解可由子问题的最优解推导得到 *例如:最短路径问题中,若$A \rightarrow B \rightarrow C$是$A \rightarrow C$的最短路径,则$A \rightarrow B$和$B \rightarrow C$也必须是各自段的最短路径* 2. **重叠子问题**:不同子问题之间存在重复计算 *例如:计算斐波那契数列$F(n)=F(n-1)+F(n-2)$时,$F(3)$会被多次计算* #### 二、实现步骤 1. **定义状态** 用变量或数组表示问题的中间状态,例如: - 斐波那契数列:$dp[i]$表示第$i$项的值 - 背包问题:$dp[i][j]$表示前$i$个物品在容量$j$时的最大价值 2. **建立状态转移方程** 根据子问题之间的关系推导递推公式,例如: - 最长公共子序列(LCS): $$ dp[i][j] = \begin{cases} dp[i-1][j-1]+1 & \text{当 } S1[i]=S2[j] \\ \max(dp[i-1][j], dp[i][j-1]) & \text{当 } S1[i] \neq S2[j] \end{cases} $$ [^3] 3. **确定初始条件和边界值** 例如斐波那契数列中$dp[0]=0, dp[1]=1$ 4. **选择计算顺序** - 自顶向下(记忆化搜索):递归+备忘录 - 自底向上:迭代填表 #### 三、代码实现示例(斐波那契数列) ```python # 自底向上实现 def fib(n): dp = [0] * (n+1) dp[1] = 1 for i in range(2, n+1): dp[i] = dp[i-1] + dp[i-2] # 状态转移方程 return dp[n] # 空间优化版(O(1)空间) def fib_optimized(n): a, b = 0, 1 for _ in range(n): a, b = b, a + b return a ``` #### 四、典型应用场景 1. **序列问题** - 最长递增子序列(LIS) - 编辑距离计算 2. **背包问题** - 0-1背包:$dp[i][j] = \max(dp[i-1][j], dp[i-1][j-w_i] + v_i)$ - 完全背包 3. **路径规划** - 网格最小路径和(状态转移方程:$dp[i][j] = \min(dp[i-1][j], dp[i][j-1]) + grid[i][j]$)[^4] 4. **动态决策问题** - 股票买卖最佳时机 - 打家劫舍问题 #### 五、算法分析 | 特征 | 说明 | |-----------|-----------------------------| | 时间复杂度 | $O(子问题数量 \times 每个子问题计算时间)$ | | 空间复杂度 | 可通过滚动数组优化 | | 优势 | 避免重复计算,效率显著提升 | | 局限性 | 要求问题具有最优子结构 |
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值