LDA用于文本的主题提取,关于它的理论知识看了很多,现在想在python环境下做一个实践。实践的数据集,英文的主要是希拉里的邮件数据集:
准备工作需要:
1、搭建python 环境
2、pip install gensim
3、安装nltk语言包
4、下载希拉里邮件数据集文件:HillaryEmails.csv
有币的同学可以在csdn里面找到。
#coding=utf8
import numpy as np
import pandas as pd
import re
from gensim import corpora, models, similarities
import gensim
from nltk.corpus import stopwords
df = pd.read_csv("./input/HillaryEmails.csv")
df = df[[‘Id‘, ‘ExtractedBodyText‘]].dropna()
def clean_email_text(text):
text = text.replace(‘\n‘," ") #新行,我们是不需要的
text = re.sub(r"-", " ", text) #把 "-" 的两个单词,分开。(比如:july-edu ==> july edu)
text = re.sub(r"\d+/\d+/\d+", "", text) #日期,对主体模型没什么意义
text = re.sub(r"[0-2]?[0-9]:[0-6][0-9]", "", text) #时间,没意义
text = re.sub(r"[\w]+@[\.\w]+", "", text) #邮件地址,没意义
text = re.sub(r"/[a-zA-Z]*[:\//\]*[A-Za-z0-9\-_]+\.+[A-Za-z0-9\.\/%&=\?\-_]+/i", "", text) #网址,没意义
pure_text = ‘‘
# 以防还有其他特殊字符(数字)等等,我们直接把他们loop一遍,过滤掉
for letter in text:
# 只留下字母和空格
if letter.isalpha() or letter==‘ ‘:
pure_text += letter
# 再把那些去除特殊字符后落单的单词,直接排除。
# 我们就只剩下有意义的单词了。
text = ‘ ‘.join(word for word in pure_text.split() if len(word)>1)
return text
docs = df[‘ExtractedBodyText‘]
docs = docs.apply(lambda s: clean_email_text(s))
doclist = docs.values
stopwords = set(stopwords.words(‘english‘))
texts = [[word for word in doc.lower().split() if word not in stopwords] for doc in doclist]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
lda = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=20)
print lda.print_topics(num_topics=20, num_words=5)
但是对于国内的应用来说,还