hdoj-1023-Train Problem II【卡特兰数】

Train Problem II

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6852 Accepted Submission(s): 3708


Problem Description
As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.

Input
The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.

Output
For each test case, you should output how many ways that all the trains can get out of the railway.

Sample Input
  
  
1 2 3 10

Sample Output
  
  
1 2 5 16796
Hint
The result will be very large, so you may not process it by 32-bit integers.

Author
Ignatius.L

Recommend
We have carefully selected several similar problems for you: 1133 1130 1131 1134 2067


卡特兰数的递推公式为: h(n)=  h(n-1)*[ (4*n-2)/ (n+1)] 
#include<stdio.h>
#include<string.h>
const int MAXN=200;
int catalan[105][MAXN];
int temp[MAXN];
void create(){
	memset(catalan,0,sizeof(catalan));
	catalan[1][0] = 1;
	int i,j,res; 
	for(i = 2; i <= 100; ++i) {
		int mid = 4*i-2;
		for(j = 0;j < MAXN;++j){
		    catalan[i][j] += catalan[i-1][j] * mid;
		    if(catalan[i][j]>=10){
		    	catalan[i][j+1] += catalan[i][j]/10;
		    	catalan[i][j] = catalan[i][j]%10;
		    }
		}
		memset(temp,0,sizeof(temp));
		mid=i+1;
		res=0;
		for(j=MAXN-1;j>=0;--j){
			temp[j] = (res*10 + catalan[i][j])/mid;
			res = (10*res + catalan[i][j])%mid;
		}
		for(j=0; j<MAXN; ++j){
			catalan[i][j] = temp[j];
		}
	}
}
int main(){
	create();
	int n;
	while(~scanf("%d",&n)){
		int i=MAXN-1;
		while(!catalan[n][i]) --i;
		for(;i>=0;--i){
			printf("%d",catalan[n][i]);
		}
		printf("\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值