如何在VS Code中使用本地LLM作为免费的编码Copilot

如何在VS Code中使用本地LLM作为免费的编程Copilot

  • Medium:How to use a local LLM as a free coding copilot in VS Code

您想拥有一个由人工智能驱动的项目,而无需向微软支付GitHub Copilot的费用吗?您想拥有一个在沙漠中也能离线运行、在家里也能运行的解决方案吗?想支持开源软件?您可能会对使用本地LLM作为编程助手感兴趣,您只需按照下面的说明操作即可。

在开始之前,让我们先简述一下本地LLM与GitHub Copilot的优缺点,确保这个选项适合你。

使用本地LLM的优缺点

优点

  • 免费——只需多支付一点电费
  • 数据安全——数据永远不会离开您的设备
  • 无需联网
  • 对系统提示有完整的控制权

缺点

  • 硬件要求——要求更好的效果需要更好的设备
  • 模型较差——最好的模型是专有的,对于消费级硬件来说太大了

使用工具

准备工作

首先下载LM Studio安装程序,然后运行刚下载的安装程序。安装完成后,打开LM Studio。现在在LM Studio的主页上,中间有一个搜索栏。在这个搜索栏(或左侧的搜索选项卡,结果都是一样的)中输入您要使用的模型名称,我建议从Code Llama 7B - Instruct开始,如果我只搜索"code llama",第一个结果就是它。现在的任务是选择要下载的模型量化。为了节省内存,LLM会从16位表示法量化为更少的位数,这就需要用质量来换取大小。

此时,您可以切换到LM Studio中的"人工智能聊天"选项卡,在加载模型后直接与模型聊天。这里我们将重点介绍LM Studio的服务器功能,以便与Continue VS Code扩展一起使用。

在LM Studio的本地服务器选项卡上,点击顶部的"选择要加载的模型"按钮(假设您还没有这样做来与模型聊天)。如果此操作失败,您可能选择的模型/量化对您的RAM来说太大了。如果您有GPU,也许可以通过将其加载到GPU来节省内存,否则您就必须选择一个更小的模型/量化。如果模型加载成功,就可以点击"Start Server(开始服务器)"按钮,然后就可以在本地服务器上托管模型了!

完成上述步骤后,前往VS Code下载开源Continue扩展。

下载Continue后,我们只需将其连接到LM Studio服务器。为此,我们需要编辑Continue的config.json文件。在Windows上,该文件位于C:/Users/{user}/.continue/config.json,而在Linux或Mac上,该文件应位于~/.continue/config.json。请为计划使用的每个模型在"models"数组中添加一个JSON对象。您需要提供"title"、“provider"和"model"字段。如果愿意,还可以提供"server_url"字段,但如果"provider"字段设置为"lmstudio”,则会假定您使用的是http://localhost:1234的默认地址/端口。您还可以通过更改"model_roles"对象来设置当前使用的模型。最后,还可以通过设置"system_message"字段来设置系统提示。

您还可以在Continue的图形用户界面中设置系统提示,方法是单击Continue标签左下方的齿轮图标并编辑"系统消息"文本框。您可以通过更改Continue标签底部的方框来切换Continue在图形用户界面中使用的模型,但要注意的是,如果您使用LM Studio服务器将其设置为另一个模型,那么也要在LM Studio中加载相应的模型。否则,Continue图形用户界面将显示错误的模型。

此时,您应该可以在本地LLM中使用Continue!Continue可以回答有关代码的问题、编辑代码或从头开始生成文件。详情请查看Continue文档。如果您想在不联网的情况下使用Continue,让LM Studio利用硬件的潜力来更快地运行模型,或者在LM Studio中为不同的模型保存预设配置,那么请继续下一节的内容。

调整设置

如果你想在本地完全使用Continue,请返回config.json文件并添加这一行,禁止匿名遥控,这样Continue就不会尝试与外界交互。

默认情况下,推理速度并不是特别快,因为它只使用CPU的4个线程,这对你的系统来说可能不是最佳选择。如果您有GPU,可以将模型加载到GPU上,从而大大加快推理速度。为此,只需选中LM Studio右侧滚动菜单底部的"GPU加速"复选框,并将n_gpu_layers设置为非零即可。正如"GPU加速"旁边的信息图标所指出的,从一个较小的数值(10-20)开始设置,直到您对GPU利用率感到满意为止。

一旦有了满意的配置,就可以点击"新建预设"按钮进行保存。这将使其成为预设菜单中的一个选项,并使切换型号变得轻而易举。

现在就可以免费运行带有GPU加速功能的本地LLM编程Copilot!

扩展阅读

  1. LangGPT 社区:https://www.langgpt.ai/
  2. 数据摸鱼wx订阅号

LLM(基于学习的管理方法)是一种在智能决策中广泛应用的方法。LLM适用于各种领域,如金融、医疗、交通等。 首先,LLM利用机器学习算法对大量数据进行分析和预测。它可以通过学习历史数据中的模式和趋势,将其应用于决策问题。通过分析数据,LLM可以发现隐藏在大量数据中的规律和关联,为决策提供有力的支持。例如,在金融领域中,LLM可以分析市场数据、企业财务报表等信息,预测股票的涨跌趋势,从而帮助投资者做出明智的投资决策。 其次,LLM还可以进行优化和调整。它可以不断学习和改进,根据反馈信息进行自适应调整。通过与环境的互动,LLM可以不断优化模型,并根据情况调整决策策略。例如,在交通管理中,LLM可以通过分析交通流量数据,根据实时情况调整路线规划,降低交通拥堵,提高通行效率。 此外,LLM在智能决策中的应用还包括风险评估、问题诊断和策略制定等方面。通过对历史数据和现有情况的分析,LLM可以预测潜在风险和问题,并提供相应的策略和措施。例如,在医疗领域中,LLM可以通过分析患者的病历和病情数据,预测患者的病情发展趋势,帮助医生制定更准确的治疗方案。 综上所述,LLM在智能决策中的应用广泛且重要。它利用机器学习算法对大量数据进行分析和预测,为决策提供有力的支持。同时,LLM还可以进行优化和调整,根据环境的变化不断改进决策策略。LLM的应用可以提高决策的准确性和效率,在各个领域发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值