文本生成的论文追溯:Seq2seq,VAE,GAN

本文探讨了深度学习在文本生成领域的进展,重点介绍了Seq2seq模型在新闻标题、对话生成等方面的应用,以及VAE如何通过连续空间生成句子,并利用语言作为潜在变量进行句子压缩。此外,还讨论了GAN在文本生成领域的初试啼声以及如何通过结合VAE实现属性可控的文本生成,以及LeakGAN在高效生成长文本上的贡献。
摘要由CSDN通过智能技术生成

Seq2seq

《Recent Advances on Neural Headline Generation》 JCST 2017

《A Neural Conversational Model》 ICML 2015

《Topic Aware Neural Response Generation》 AAAI 2017 

《A persona-Based Neural Conversation Model》 ACL 2016

《Incorporating Copying Mechanism in Sequence-to-Sequence Learning》 ACL 2016

《Context-aware Natural Language Generation with Recurrent Neural Networks》 AAAI 2016

《Learning to Generate Product Reviews from Attributes》 EACL 2017

 

VAE:

 

  • 《Generating Sentences From a Continuous Spaces》. ICLR 2016

  • 《Neural Variational Inference for Text Processing》. ICML 2016

  • 《Language as a Latent Variable: Discrete Generative Models for Sentence Compression》. EMNLP 2016

  • 《A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues》. AAAI 2017

 

GAN:

GAN 的首次提出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值