线性回归

线性回归,简单讲就是拟合一条直线,意味着可以将输入项分别乘以一些回归系数,再将结果加起来作为输出

训练线性回归算法,就是找到回归系数

#线性回归例子
from sklearn import datasets
import numpy as np

diabetes = datasets.load_diabetes()
diabetes_X_train = diabetes.data[:-20]
diabetes_X_test  = diabetes.data[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test  = diabetes.target[-20:]

from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(diabetes_X_train, diabetes_y_train)
print(regr.coef_) #输出线性回归的参数
# The mean square error
err = np.mean((regr.predict(diabetes_X_test)-diabetes_y_test)**2)
print(err)
# Explained variance score: 1 is perfect prediction
# and 0 means that there is no linear relationship
# between X and y.
print(regr.score(diabetes_X_test, diabetes_y_test))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值