重采样与重分类

        经常会有同学将重采样和重分类混为一谈。实际上,这完全是不同的两个知识点。

      重采样是指更改栅格数据集的空间分辨率并针对所有新像素大小的聚合值或插值设置规则,可以改变像元的大小,但栅格数据集的范围将保持不变。重采样之后栅格数据的每个像元将具有唯一属性值。重采样的效果是像素的灰度值变化了,跟坐标系并没有关系,可以使用identify工具进行像素灰度值的查询,查看重采样的变化。当现有的栅格数据集的值不符合要求时,经常采样重采样操作对栅格数据进行插值。

        重分类是指对栅格值重新进行分类。如果要对值的范围重新分类,除两个输入范围的边界外,范围不应重叠。在发生重叠的位置,较低输入范围的最大值将包含在取值范围中,而较高输入范围的最小值将不包含在取值范围中。举例来说,如果指定了两个范围,比如将值 1 5 重新分类为 100,将 <

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值