海涅定理的定义理解起来较为复杂.虽然其形式本身就有些晦涩,但用于证伪却十分简单.
下面给出定义.
lim
x
→
x
0
f
(
x
)
=
A
\lim_{x\rightarrow x_0}f(x)=A
limx→x0f(x)=A的充分必要条件是:
对任何趋于
x
0
{x_0}
x0的数列
{
x
n
}
\{x_n\}
{xn},其相应的函数值数列
{
f
(
x
n
)
}
\{f(x_n)\}
{f(xn)}满足
lim
n
→
∞
f
(
x
n
)
=
A
\lim_{n\rightarrow\infty} f(x_n)=A
limn→∞f(xn)=A
换句话说就是对于所有数列 { x n } \{x_n\} {xn},只要 x n → x 0 x_n\rightarrow x_0 xn→x0,就有 f ( x n ) → A f(x_n)\rightarrow A f(xn)→A
具体证明略.
理解起来确实有些困难,但它的意思是:
只要所有趋于
x
0
x_0
x0的数列
{
x
n
}
\{x_n\}
{xn}对应的新数列
{
f
(
x
n
)
}
\{f(x_n)\}
{f(xn)},满足
lim
n
→
∞
f
(
x
n
)
=
A
\lim_{n\rightarrow\infty}f(x_n)=A
limn→∞f(xn)=A,那么函数
f
(
x
)
f(x)
f(x)的极限就是A。
反过来也能从函数极限是A推断所有趋于
x
0
x_0
x0的数列
{
x
n
}
\{x_n\}
{xn}对应的新数列
{
f
(
x
n
)
}
\{f(x_n)\}
{f(xn)},满足
lim
n
→
∞
f
(
x
n
)
=
A
\lim_{n\rightarrow\infty}f(x_n)=A
limn→∞f(xn)=A
例:
证明
lim
x
→
x
0
f
(
x
)
\lim_{x\rightarrow x_0}f(x)
limx→x0f(x)不存在.
解:取
x
n
′
=
1
2
n
π
x_n'=\frac{1}{2n\pi}
xn′=2nπ1,则
x
n
′
→
0
x_n'\rightarrow 0
xn′→0且
x
n
′
≠
0
(
n
→
∞
)
x_n'≠0(n\rightarrow \infty)
xn′=0(n→∞)
则
lim
n
→
∞
1
sin
x
n
′
=
lim
n
→
∞
sin
2
n
π
=
0
\lim_{n\rightarrow\infty}\frac{1}{\sin x_n'}=\lim_{n\rightarrow\infty}\sin 2n\pi=0
limn→∞sinxn′1=limn→∞sin2nπ=0
再取
x
n
′
′
=
1
2
n
π
+
π
2
x_n''=\frac{1}{2n\pi+\frac{\pi}{2}}
xn′′=2nπ+2π1,则
x
n
′
′
→
0
x_n''\rightarrow0
xn′′→0且
x
n
′
′
≠
0
(
n
→
∞
)
x_n''≠0(n\rightarrow \infty)
xn′′=0(n→∞)
lim
x
→
∞
sin
1
x
n
′
′
=
lim
n
→
∞
sin
(
2
n
π
+
π
2
)
=
1
\lim_{x\rightarrow\infty}\sin \frac{1}{x_n''}=\lim_{n\rightarrow\infty}\sin(2n\pi+\frac{\pi}{2})=1
limx→∞sinxn′′1=limn→∞sin(2nπ+2π)=1
显然两个极限不相等,所以极限不存在.
从这里可以看出,海涅定理的任意性使得其难以证明命题为真,但是很容易证明命题为假(只要举出两个反例,你就能证明出来!),因此多用于反证法与归谬法中.
另外,海涅定理使得数列极限可以转化为函数极限再来求解,这就使得极限的求解过程中可以使用许多如洛必达法则等函数专有的方法去解题。