在数学分析中大家已经学习了以下形式的海涅-博雷尔( Heine- Borel)有限覆盖定理:

设 III 是 Rn\mathbf { R } ^ { n }Rn 中 的闭区间, M\mathscr { M }M是 一族开区间,它覆盖了 I,I ,I, 则在 M\mathscr { M }M 中一定存在有限个开区间,它们同样覆盖了 I.I .I.
我们下面要把上述定理推广成更一般的形式
定理5(海涅-博雷尔有限覆盖定理)
设 FFF 是 一个有界闭集,M\mathscr { M }M 是一族开集{Ui}i∈A,\left\{ U _ { i } \right\} _ { i \in A } ,{Ui}i∈A, 它 覆盖了 FFF (即F⊂⋃i∈AUi),F \subset \bigcup _{i \in A}U_{i}),F⊂⋃i∈AUi), 则 M\mathscr { M }M中一定存在有限多个开集 U1,U2,⋯ ,Um,U _ { 1 } , U _ { 2 } , \cdots , U _ { m } ,U1,U2,⋯,Um, 它们同样覆盖了 FFF (即 F⊂⋃i=1mUiF \subset \bigcup _{i = 1}^{m}U_{i}F⊂⋃i=1mUi)
证明
因 FFF 是有界闭集,所以在 Rn\mathbf { R } ^ { n }Rn 中 存在闭区间 III包 含 F.F .F. 记 D\mathscr { D }D 为由 L\mathscr { L }L 中的全体开集与开集 FcF ^ { c }Fc 一 起组成的新开集族,则 D\mathscr { D }D 覆盖了Rn,\mathbf { R } ^ { n } ,Rn, 因 此也覆盖了 I.I .I. 对 于 III 中任一点P,P ,P, 存 在 D\mathscr { D }D 中开集 UP,U _ { P } ,UP, 使得P∈UP,P \in U _ { P } ,P∈UP, 因而存在开区间 IP⊂UP,I _ { P } \subset U _ { P } ,IP⊂UP, 并且P∈IP,P \in I _ { P } ,P∈IP, 所以开区间族{Ip:P∈I}\left\{ I _ { p } : P \in I \right\}{Ip:P∈I} 覆盖了 I.I .I.
由数学分析中有限覆盖定理,在这族开区间中存在有限个开区间,设为IP1,IP2,⋯ ,IPn,I _ { P _ { 1 } } , I _ { P _ { 2 } } , \cdots , I _ { P _ { n } } ,IP1,IP2,⋯,IPn,仍然覆盖了 I,I ,I, 则由 F⊂I,F \subset I ,F⊂I, 及IPi⊂Upi(i=1,2,⋯ ,m),I _ { P _ { i } } \subset U _ { p _ { i } } ( i = 1 , 2 , \cdots , m ) ,IPi⊂Upi(i=1,2,⋯,m),得 F⊂⋃i=1mUPi.F \subset \bigcup _ { i = 1 } ^ { m } U _ { P _ { i } } .F⊂⋃i=1mUPi. 如果开集 FcF ^ { c }Fc 不 在这 mmm 个开集中,则UP1,UP2,⋯ ,UPnU _ { P _ { 1 } } , U _ { P _ { 2 } } , \cdots , U _ { P _ { n } }UP1,UP2,⋯,UPn覆盖了 F,F ,F, 定 理得证;否则从这 mmm 个开集中去掉 Fc,F ^ { c } ,Fc, 因 为 FcF ^ { c }Fc 与 FFF 不相交,所以剩下的m−1m - 1m−1 个开集仍然覆盖了 F.F .F.

被折叠的 条评论
为什么被折叠?



