在数学分析中大家已经学习了以下形式的海涅-博雷尔( Heine- Borel)有限覆盖定理:
设 I I I 是 R n \mathbf { R } ^ { n } Rn 中 的闭区间, M \mathscr { M } M是 一族开区间,它覆盖了 I , I , I, 则在 M \mathscr { M } M 中一定存在有限个开区间,它们同样覆盖了 I . I . I.
我们下面要把上述定理推广成更一般的形式
定理5(海涅-博雷尔有限覆盖定理)
设 F F F 是 一个有界闭集, M \mathscr { M } M 是一族开集 { U i } i ∈ A , \left\{ U _ { i } \right\} _ { i \in A } , { Ui}i∈A, 它 覆盖了 F F F (即 F ⊂ ⋃ i ∈ A U i ) , F \subset \bigcup _{i \in A}U_{i}), F⊂⋃i∈AUi), 则 M \mathscr { M } M中一定存在有限多个开集 U 1 , U 2 , ⋯ , U m , U _ { 1 } , U _ { 2 } , \cdots , U _ { m } , U1,U