实变函数论2-点集3-7:海涅-博雷尔有限覆盖定理【设F是一个有界闭集,M是一族开集{Uᵢ},它覆盖了F,则M中一定存在有限多个开集U₁,U₂…Uₙ,它们同样覆盖了F】【ℝⁿ中的有界闭集必为紧集】

在数学分析中大家已经学习了以下形式的海涅-博雷尔( Heine- Borel)有限覆盖定理:

在这里插入图片描述

I I I R n \mathbf { R } ^ { n } Rn 中 的闭区间, M \mathscr { M } M是 一族开区间,它覆盖了 I , I , I, 则在 M \mathscr { M } M 中一定存在有限个开区间,它们同样覆盖了 I . I . I.

我们下面要把上述定理推广成更一般的形式

定理5(海涅-博雷尔有限覆盖定理)

F F F 是 一个有界闭集, M \mathscr { M } M 是一族开集 { U i } i ∈ A , \left\{ U _ { i } \right\} _ { i \in A } , { Ui}iA, 它 覆盖了 F F F (即 F ⊂ ⋃ i ∈ A U i ) , F \subset \bigcup _{i \in A}U_{i}), FiAUi, M \mathscr { M } M中一定存在有限多个开集 U 1 , U 2 , ⋯   , U m , U _ { 1 } , U _ { 2 } , \cdots , U _ { m } , U1,U

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值