函数极限<2>——Heine定理

Heine定理

函数极限与数列极限的联系

定理1.1 Heine定理

lim ⁡ x → x 0 f ( x ) = A \lim _{x\to x_{0} } f\left ( x \right ) =A limxx0f(x)=A的充要条件是对任意满足 ∃ x 0 ∈ R \exists x_{0}\in \mathbb{R} x0R: x n ≠ x 0 x_{n}\ne x_{0} xn=x0, lim ⁡ n → ∞ x n = x 0 \lim _{n \to \infty }x_{n}=x_{0} limnxn=x0条件的数列 { x n } \left \{ x_{n} \right \} {xn},总有 lim ⁡ n → ∞ f ( x n ) = A \lim_{n \to \infty}f\left ( x_{n} \right )=A limnf(xn)=A,其中实数 A A A存在且有限。

<1>必要性
根据数列极限定义, ∀ δ > 0 \forall \delta >0 δ>0, ∃ N \exists N N: ∀ n > N \forall n>N n>N, ∣ x n − x 0 ∣ < δ \left | x_{n}-x_{0} \right |< \delta xnx0<δ,
又根据函数极限定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x -x_{0} \right | <\delta \right ) x(0<xx0<δ), ∣ f ( x ) − A ∣ < ε \left | f\left (x \right )-A \right |<\varepsilon f(x)A<ε,令 x = x n x=x_{n} x=xn,可得 lim ⁡ n → ∞ f ( x n ) = A \lim_{n \to \infty}f\left ( x_{n} \right )=A limnf(xn)=A
<2>充分性
构造逆否命题:
( p → q ) ⇔ ( ¬ q → ¬ p ) p : lim ⁡ n → ∞ f ( x n ) = A ⇔ ∀ ε > 0 , ∃ N : ∀ n > N , ∣ f ( x n ) − A ∣ < ε ¬ p : lim ⁡ n → ∞ f ( x n ) ≠ A ⇔ ∃ ε > 0 , ∀ N : ∃ n > N , ∣ f ( x n ) − A ∣ ≥ ε q : lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 : ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) , ∣ f ( x ) − A ∣ < ε ¬ q : lim ⁡ x → x 0 f ( x ) ≠ A ⇔ ∃ ε > 0 : ∀ δ > 0 , ∃ x ( 0 < ∣ x − x 0 ∣ < δ ) , ∣ f ( x ) − A ∣ ≥ ε \begin{array}{l} &&\left ( p\to q \right ) \Leftrightarrow \left ( \neg q\to \neg p \right ) \\ p&:&\lim_{n\to \infty }f\left ( x_{n} \right )=A\Leftrightarrow \forall \varepsilon >0,\exists N:\forall n>N,\left | f\left ( x_{n} \right )-A \right |<\varepsilon \\ \neg p&:&\lim_{n\to \infty }f\left ( x_{n} \right )\neq A\Leftrightarrow \exists \varepsilon >0,\forall N:\exists n>N,\left | f\left ( x_{n} \right )-A \right |\ge \varepsilon \\ q&:&\lim_{x \to x_{0} }f\left ( x \right )=A\Leftrightarrow \forall \varepsilon >0,\exists \delta >0:\forall x\left ( 0<\left | x -x_{0} \right | <\delta \right ),\left | f\left ( x \right )-A \right |<\varepsilon \\ \neg q&:&\lim_{x \to x_{0} }f\left ( x \right )\neq A\Leftrightarrow \exists \varepsilon >0:\forall \delta >0,\exists x \left ( 0<\left | x -x_{0} \right | <\delta \right ),\left | f\left ( x \right )-A \right |\ge \varepsilon \\ \end{array} p¬pq¬q::::(pq)(¬q¬p)limnf(xn)=Aε>0,N:n>N,f(xn)A<εlimnf(xn)=Aε>0,N:n>N,f(xn)Aεlimxx0f(x)=Aε>0,δ>0:x(0<xx0<δ),f(x)A<εlimxx0f(x)=Aε>0:δ>0,x(0<xx0<δ),f(x)Aε
而对逆否命题 ¬ q → ¬ p \neg q\to \neg p ¬q¬p可以通过构造无穷小量数列 δ n = 1 n \delta _{n} =\frac{1}{n} δn=n1证明。

这一章节大量运用数理逻辑中谓词演算的性质,关于谓词演算可参考前文: 谓词逻辑<1>——谓词逻辑的基本概念

  • 11
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值