数列极限和函数极限

Heine定理

lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A limxx0f(x)=A 的充分必要条件为对任何 x 0 x_0 x0 为极限的数列 { x n } ( x n ≠ x 0 ) \{x_n\}(x_n\ne x_0) {xn}(xn=x0),都有 lim ⁡ n → ∞ f ( x n ) = A \lim_{n\to\infty}f(x_n)=A limnf(xn)=A

对这条定理的使用一般是从左边推到右边,即从函数极限推出数列极限

而从右边推出左边常常用在反证中:即从数列没有极限推出函数没有极限

举两个例子,

【例1】求极限 lim ⁡ n → ∞ n ( π 2 − arctan ⁡ n ) \lim_{n\to\infty}n(\frac{\pi}{2}-\arctan n) limnn(2πarctann)

【解】:若 lim ⁡ x → + ∞ x ( π 2 − arctan ⁡ x ) \lim_{x\to+\infty}x(\frac{\pi}{2}-\arctan x) limx+x(2πarctanx) 极限存在,则由 Heine定理知, lim ⁡ n → ∞ n ( π 2 − arctan ⁡ n ) \lim_{n\to\infty}n(\frac{\pi}{2}-\arctan n) limnn(2πarctann)也会存在,且等于函数极限。

因为 lim ⁡ x → + ∞ x ( π 2 − arctan ⁡ x ) = lim ⁡ x → + ∞ π 2 − arctan ⁡ x 1 x = lim ⁡ x → + ∞ − 1 1 + x 2 − 1 x 2 = 1 \lim_{x\to+\infty}x(\frac{\pi}{2}-\arctan x)=\lim_{x\to+\infty}\frac{\frac{\pi}{2}-\arctan x}{\frac1x}=\lim_{x\to+\infty}\frac{-\frac{1}{1+x^2}}{-\frac{1}{x^2}}=1 limx+x(2πarctanx)=limx+x12πarctanx=limx+x211+x21=1

【例2】研究 lim ⁡ x → + ∞ sin ⁡ x \lim_{x\to+\infty}\sin x limx+sinx 是否存在

【解】:取 x n = n π ( n = 1 , 2 , ⋯   ) x_n=n\pi(n=1,2,\cdots) xn=(n=1,2,),显然 x n → + ∞ x_n\to+\infty xn+ x → + ∞ x\to+\infty x+ 的一个子列, lim ⁡ n → + ∞ sin ⁡ x n = lim ⁡ n → + ∞ sin ⁡ n π = 0 \lim_{n\to+\infty}\sin x_n=\lim_{n\to+\infty}\sin n\pi = 0 limn+sinxn=limn+sin=0 ;
y n = 2 n π + π 2 ( n = 1 , 2 , ⋯   ) y_n=2n\pi+\frac{\pi}{2}(n=1,2,\cdots) yn=2+2π(n=1,2,),显然 y n → + ∞ y_n\to+\infty yn+ x → + ∞ x\to+\infty x+ 的一个子列, lim ⁡ n → + ∞ sin ⁡ y n = lim ⁡ n → + ∞ sin ⁡ ( 2 n π + π 2 ) = 1 \lim_{n\to+\infty}\sin y_n=\lim_{n\to+\infty}\sin (2n\pi+\frac{\pi}{2}) = 1 limn+sinyn=limn+sin(2+2π)=1,

由Heine定理的逆否命题知,原函数极限不存在

Heine定理重要性

重要性的阐述来自百度词条

虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。

数列极限和子列极限

实际上我们看到从数列极限推出函数极限的条件是很苛刻的,相比之下,数列到数列(其子列)就温和了很多,从子列倒推回原数列是可行的。

lim ⁡ n → ∞ a n \lim_{n\to\infty}a_n limnan 存在的充分必要条件是 lim ⁡ n → ∞ a 2 n \lim_{n\to\infty}a_{2n} limna2n lim ⁡ n → ∞ a 2 n − 1 \lim_{n\to\infty}a_{2n-1} limna2n1 都存在且相等

这个定理是级数中莱布尼茨判别法的关键。

单调性

【例】设 a 1 = 1 a_1=1 a1=1,且 a n + 1 + 1 − a n = 0   ( n = 1 , 2 , ⋯   ) a_{n+1}+\sqrt{1-a_n}=0~(n=1,2,\cdots) an+1+1an =0 (n=1,2,),证明: lim ⁡ n → ∞ a n \lim_{n\to\infty}a_n limnan 存在并求此极限

【证明】令 y = − 1 − x y=-\sqrt{1-x} y=1x ,因为 y ′ = 1 2 1 − x > 0 y'=\frac{1}{2\sqrt{1-x}}>0 y=21x 1>0,所以 { a n } \{a_n\} {an}单调,又因为 a 1 = 1 > a 2 = 0 a_1=1>a_2=0 a1=1>a2=0,所以 { a n } \{a_n\} {an}单调减少;
(其次利用数学归纳法证明 a n ≥ − 1 + 5 2 a_n\ge -\frac{1+\sqrt{5}}{2} an21+5 ,利用单调有界原理该题便得解)

【赏析】我们的重点放在这两句证明

因为 y ′ = 1 2 1 − x > 0 y'=\frac{1}{2\sqrt{1-x}}>0 y=21x 1>0,所以 { a n } \{a_n\} {an}单调,又因为 a 1 = 1 > a 2 = 0 a_1=1>a_2=0 a1=1>a2=0,所以 { a n } \{a_n\} {an}单调减少;

什么意思?

函数单调 → \to 对应的数列单调
but, 函数单调上升 ↛ \nrightarrow 对应的数列单调上升

这就很有意思了,我 y = − 1 − x y=-\sqrt{1-x} y=1x 虽然是个单调上升的函数,结果 a n a_n an 反倒是单调下降的。先不细究原因,先从直观来看一下这是一幅怎样的图景。

很好玩,就像我们在下楼梯一样。是啊,这是一条楼梯,但是没说它是往上走还是往下走的。不过,一旦选择了一个方向,它就会被推着继续走下去。

假使我们每个人出生的时候都是一个原点,也即途中对应着(0, 0)的I点,I本来是Geogebra给的名字,冥冥中变成了“我”的英文单词。在这个结点,两个方向,两个截然不同的结果,一个忙碌一生却始终接触不到近在眼前的终结,一个永远在向着远方,不知疲惫……

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值