2022 CCPC桂林站 D Alice‘s Dolls 题解

题目链接:https://codeforces.com/gym/104008/problem/D
题意:抽一次有 p p p 的概率抽到东西, ( 1 − p ) (1-p) (1p) 的概率抽不到,对于所有的 1 ≤ k ≤ m 1\le k\le m 1km 求出抽到第 n n n 次所用次数的 k k k 次方的期望。
1 ≤ m ≤ 1 0 5 , 1 ≤ n ≤ 1 0 5 , p = a b 1\le m\le 10^5,1\le n\le 10^5,p=\frac{a}{b} 1m105,1n105,p=ba

X i X_i Xi 表示已经抽到了 i i i 个时,再抽到一次时所抽的次数。 Y Y Y 表示抽到 n n n 个时抽的次数。那么显然有 Y = ∑ i = 0 n − 1 X i Y=\sum_{i=0}^{n-1}X_i Y=i=0n1Xi

Y k = ( ∑ i = 0 n − 1 X i ) k Y^k=(\sum_{i=0}^{n-1}X_i)^k Yk=(i=0n1Xi)k, 其在期望意义下也成立,即 E Y k = E ( ( ∑ i = 0 n − 1 X i ) k ) EY^k=E((\sum_{i=0}^{n-1}X_i)^k) EYk=E((i=0n1Xi)k),暴力展开:
E Y k = ∑ a 0 + a 2 + . . . + a n − 1 = k ( k a 0 , a 1 , . . . , a n − 1 ) ∏ i = 0 n − 1 E ( X i a i ) E Y k k ! = ∑ a 0 + a 2 + . . . + a n − 1 = k ∏ i = 0 n − 1 E ( X i a i ) a i ! ( X 的下标不同的项独立,因此可以拆开期望 E X Y = E X E Y ) \begin{aligned} EY^k&=\sum_{a_0+a_2+...+a_{n-1}=k}\binom{k}{a_0,a_1,...,a_{n-1}}\prod_{i=0}^{n-1}E(X_i^{a_i})\\ \frac{EY^k}{k!}&=\sum_{a_0+a_2+...+a_{n-1}=k}\prod_{i=0}^{n-1}\frac{E(X_i^{a_i})}{a_i!}(X的下标不同的项独立,因此可以拆开期望EXY=EXEY) \end{aligned} EYkk!EYk=a0+a2+...+an1=k(a0,a1,...,an1k)i=0n1E(Xiai)=a0+a2+...+an1=ki=0n1ai!E(Xiai)(X的下标不同的项独立,因此可以拆开期望EXY=EXEY)
同时可以发现 X i X_i Xi 之间独立同分布,因此 E X i EX_i EXi 两两都是相等的,不妨都变成 X X X

只需要设 E.G.F. F ( x ) = ∑ i ≥ 0 E X i i ! x i F(x)=\sum_{i\ge 0} \dfrac{EX^{i}}{i!}x^i F(x)=i0i!EXixi。于是 E Y k = [ x k ] F ( x ) n EY^k=[x^k]F(x)^n EYk=[xk]F(x)n

现在的问题变为求 E X k EX^k EXk

容易发现:
X = { 1 直接抽到 1 + X 没有抽到 X k = { 1 直接抽到 ( 1 + X ) k 没有抽到 X=\begin{cases}1& 直接抽到\\1+X&没有抽到\end{cases}\\ X^k=\begin{cases}1&直接抽到\\(1+X)^k&没有抽到\end{cases}\\ X={11+X直接抽到没有抽到Xk={1(1+X)k直接抽到没有抽到

根据条件期望公式:
E X k = p + ( 1 − p ) E ( ( 1 + X ) k ) = 1 + 1 − p p ∑ i = 0 k − 1 E X i ( k i ) E X k k ! = 1 + 1 − p p ∑ i = 0 k − 1 E X i i ! 1 ( k − i ) ! EX^k=p+(1-p)E((1+X)^k)\\ =1+\frac{1-p}{p}\sum_{i=0}^{k-1}EX^i\binom{k}{i}\\ \frac{EX^k}{k!}=1+\frac{1-p}{p}\sum_{i=0}^{k-1}\frac{EX^i}{i!}\dfrac{1}{(k-i)!} EXk=p+(1p)E((1+X)k)=1+p1pi=0k1EXi(ik)k!EXk=1+p1pi=0k1i!EXi(ki)!1
G [ k ] = G[k]= G[k]= E X k k ! \frac{EX^k}{k!} k!EXk,可以发现 G [ k ] G[k] G[k] 只与 G [ 0 ] ∼ G [ k − 1 ] G[0]\sim G[k-1] G[0]G[k1] 有关,可以分支FFT得到所有的 G [ i ] G[i] G[i]

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值