带系数的只有两个方程的 excrt 有解条件

考虑一个 excrt 方程:
a t = x   m o d   n b t = y   m o d   m at=x\bmod{n}\\ bt=y\bmod{m} at=xmodnbt=ymodm
正常的做法是先化为标准 excrt 方程,再逐一判断是否有解。

最近发现了一个在 ( a , b ) = 1 (a,b)=1 (a,b)=1 ( ( a , b ) (a,b) (a,b) 表示 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)) 的条件下判断有解的办法,结论是有解的充要条件是:

( a m , b n ) ∣ b x − a y (am,bn)|bx-ay (am,bn)bxay

证明:

必要性:

原式等价于:

a b t = b x   m o d   b n a b t = a y   m o d   a m abt=bx\bmod{bn}\\ abt=ay\bmod{am} abt=bxmodbnabt=aymodam

b x + u b n = a y + v a m bx+ubn=ay+vam bx+ubn=ay+vam 有解是原式有解的必要条件,根据裴蜀定理,有 ( a m , b n ) ∣ b x − a y (am,bn)|bx-ay (am,bn)bxay

充分性:

如果 ( a m , b n ) ∣ b x − a y (am,bn)|bx-ay (am,bn)bxay,则只需要证明每个方程都有解即可,即 ( a , n ) ∣ x (a,n)|x (a,n)x ( b , m ) ∣ y (b,m)|y (b,m)y
反证,假设 ( a , n ) ∤ x (a,n)\nmid x (a,n)x,则 ( a , n ) ≠ 1 (a,n)\neq 1 (a,n)=1。因为 ( a , b ) = 1 (a,b)=1 (a,b)=1,所以 ( b , ( a , n ) ) = 1 (b,(a,n))=1 (b,(a,n))=1。所以 ( a , n ) ∤ b x (a,n)\nmid bx (a,n)bx
此时, b x − a y   m o d   ( a , n ) = b x m o d    ( a , n ) ≠ 0 bx-ay\bmod{(a,n)}=bx\mod{(a,n)}\neq 0 bxaymod(a,n)=bxmod(a,n)=0
因为 ( a , n ) ∣ ( a m , b n ) (a,n)|(am,bn) (a,n)(am,bn) 所以 ( a m , b n ) ∤ b x − a y (am,bn)\nmid bx-ay (am,bn)bxay,与条件矛盾,因此 ( a , n ) ∣ x (a,n)|x (a,n)x

对于 ( b , m ) ∣ y (b,m)|y (b,m)y 同理。 □ \square

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值