一个组合恒等式的证明

证明:对于 n ∈ N + n\in \mathbb{N^+} nN+

∑ i = 1 n 1 i = ∑ i = 1 n ( − 1 ) i − 1 ( n i ) 1 i \sum_{i=1}^n \frac{1}{i}=\sum_{i=1}^n (-1)^{i-1}\binom{n}{i}\frac{1}{i} i=1ni1=i=1n(1)i1(in)i1

组合意义:

证明:

考虑问题 “ n n n 个不同的球,每次等概率抽出一个放回,问把所有球都抽过一次的期望抽的次数。”

f [ i ] f[i] f[i] 表示还有 i i i 个球没有被抽到过的情况下,期望次数,转移有 f [ i ] = n − i n f [ i ] + i n f [ i − 1 ] + 1 f[i]=\frac{n-i}{n}f[i]+\frac{i}{n}f[i-1]+1 f[i]=nnif[i]+nif[i1]+1。则 f [ i ] = f [ i − 1 ] + n i f[i]=f[i-1]+\frac{n}{i} f[i]=f[i1]+in f [ 0 ] = 0 f[0]=0 f[0]=0。问题答案为 f [ n ] = n × L H S f[n]=n\times LHS f[n]=n×LHS

t i t_i ti 为第 i i i 个球首次被抽到的次数的随机变量,记集合 S = t 1 , t 2 , … , t n S={t_1,t_2,\ldots,t_n} S=t1,t2,,tn,问题答案是 E ( max ⁡ t ∈ S { t } ) E(\max_{t\in S}\{t\}) E(maxtS{t})。根据最值反演:
E ( max ⁡ t ∈ S { t } ) = ∑ T ⊆ S T ≠ ∅ ( − 1 ) ∣ T ∣ − 1 E ( min ⁡ t ∈ T { t } ) = ∑ i = 1 n ∑ ∣ T ∣ = i ( − 1 ) i − 1 E ( min ⁡ t ∈ T { t } ) = ∑ i = 1 n ∑ ∣ T ∣ = i ( − 1 ) i − 1 n i = ∑ i = 1 n ( − 1 ) i − 1 n i ∑ ∣ T ∣ = i 1 = ∑ i = 1 n ( − 1 ) i − 1 ( n i ) n i = n × R H S \begin{aligned} E(\max_{t\in S}\{t\})&=\sum_{\substack{T\subseteq S\\T\neq \emptyset}}(-1)^{|T|-1}E(\min_{t\in T}\{t\})\\ &=\sum_{i=1}^n \sum_{|T|=i} (-1)^{i-1}E(\min_{t\in T}\{t\})\\ &=\sum_{i=1}^n \sum_{|T|=i} (-1)^{i-1}\frac{n}{i}\\ &=\sum_{i=1}^n (-1)^{i-1}\frac{n}{i} \sum_{|T|=i} 1\\ &=\sum_{i=1}^n (-1)^{i-1}\binom{n}{i}\frac{n}{i}\\ &=n\times RHS\\ \end{aligned} E(tSmax{t})=TST=(1)T1E(tTmin{t})=i=1nT=i(1)i1E(tTmin{t})=i=1nT=i(1)i1in=i=1n(1)i1inT=i1=i=1n(1)i1(in)in=n×RHS

因此 L H S = R H S LHS=RHS LHS=RHS □ \square

代数推导:

证明:令 f ( x ) = ∑ i = 1 n 1 i x i f(x)=\sum_{i=1}^n\frac{1}{i}x^i f(x)=i=1ni1xi

L H S = f ( 1 ) − f ( 0 ) = ∫ 0 1 f ′ ( x ) d x = ∫ 0 1 ∑ i = 0 n − 1 x i d x = ∫ 0 1 1 − x n 1 − x d x LHS=f(1)-f(0)=\int_{0}^1f'(x)dx=\int_{0}^1 \sum_{i=0}^{n-1}x^i dx=\int^{1}_0\frac{1-x^n}{1-x}dx LHS=f(1)f(0)=01f(x)dx=01i=0n1xidx=011x1xndx

g ( x ) = ∑ i = 1 n ( − 1 ) i − 1 ( n i ) 1 i x i g(x)=\sum_{i=1}^n (-1)^{i-1}\binom{n}{i}\frac{1}{i}x^i g(x)=i=1n(1)i1(in)i1xi


R H S = g ( 1 ) − g ( 0 ) = ∫ 0 1 g ′ ( x ) d x = ∫ 0 1 ∑ i = 1 n ( − 1 ) i − 1 ( n i ) x i − 1 d x = ∫ 0 1 ( − 1 ) x ∑ i = 1 n ( − 1 ) i ( n i ) x i d x = ∫ 0 1 ( − 1 ) x ( ∑ i = 0 n ( − 1 ) i ( n i ) x i − 1 ) d x = ∫ 0 1 ( − 1 ) x ( ( 1 − x ) n − 1 ) d x \begin{aligned} RHS&=g(1)-g(0)\\ &=\int_0^1g'(x)dx\\ &=\int_0^1\sum_{i=1}^n (-1)^{i-1}\binom{n}{i}x^{i-1}dx\\ &=\int_0^1\frac{(-1)}{x}\sum_{i=1}^n (-1)^{i}\binom{n}{i}x^{i}dx\\ &=\int_0^1\frac{(-1)}{x}(\sum_{i=0}^n (-1)^{i}\binom{n}{i}x^{i}-1)dx\\ &=\int_0^1\frac{(-1)}{x}((1-x)^n-1)dx \end{aligned} RHS=g(1)g(0)=01g(x)dx=01i=1n(1)i1(in)xi1dx=01x(1)i=1n(1)i(in)xidx=01x(1)(i=0n(1)i(in)xi1)dx=01x(1)((1x)n1)dx
x = 1 − t x=1-t x=1t,则:

R H S = ∫ 0 1 1 − t n 1 − t d t = ∫ 0 1 1 − x n 1 − x d x = L H S □ \begin{aligned} RHS&=\int_0^1\frac{1-t^n}{1-t}dt\\ &=\int_0^1\frac{1-x^n}{1-x}dx\\ &=LHS&\square \end{aligned} RHS=011t1tndt=011x1xndx=LHS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值