2023杭电多校第5场 1008 奇怪的做法

题意(为了方便描述,修改了一些题意,本来是 j m j^m jm):求
∑ i = 0 n ( n i ) p i ( 1 − p ) n − i ∑ j = 1 i j m − 1 ( 1 ≤ n ≤ 1 0 9 , 1 ≤ m − 1 ≤ 1 0 6 ) \sum_{i=0}^n\binom{n}{i}p^i(1-p)^{n-i}\sum_{j=1}^ij^{m-1}\quad (1\le n\le 10^9,1\le m-1\le 10^6) i=0n(in)pi(1p)nij=1ijm1(1n109,1m1106)
容易发现:存在一个 m m m 次多项式 f ( x ) f(x) f(x) 满足 f ( i ) = ∑ j = 1 i j m − 1 f(i)=\sum_{j=1}^ij^{m-1} f(i)=j=1ijm1 f ( x ) = ∑ i = 0 m a i x i f(x)=\sum_{i=0}^ma_ix^i f(x)=i=0maixi

则:
∑ i = 0 n ( n i ) p i ( 1 − p ) n − i ∑ j = 1 i j m − 1 = ∑ i = 0 n ∑ j = 0 m a j i j p i ( 1 − p ) n − i ( n i ) = ∑ i = 0 n ∑ j = 0 m a j ∑ k = 0 i S ( j , k ) ( i k ) k ! p i ( 1 − p ) n − i ( n i ) = ∑ j = 0 m a j ∑ k = 0 n S ( j , k ) ∑ i = k n ( i k ) ( n i ) k ! p i ( 1 − p ) n − i = ∑ j = 0 m a j ∑ k = 0 n S ( j , k ) ∑ i = k n ( n k ) ( n − k i − k ) k ! p i ( 1 − p ) n − i = ∑ j = 0 m a j ∑ k = 0 n S ( j , k ) ( n k ) k ! p k ∑ i ′ = 0 n − k ( n − k i ′ ) p i ′ ( 1 − p ) n − k − i ′ = ∑ j = 0 m a j ∑ k = 0 n S ( j , k ) ( n k ) k ! p k 1 \begin{aligned} \sum_{i=0}^n\binom{n}{i}p^i(1-p)^{n-i}\sum_{j=1}^ij^{m-1}&=\sum_{i=0}^n\sum_{j=0}^ma_j{\color{red}{i^j}}p^i(1-p)^{n-i}\binom{n}{i}\\ &=\sum_{i=0}^n\sum_{j=0}^ma_j{\color{red}{\sum_{k=0}^i}S(j,k)\binom{i}{k}k!}p^i(1-p)^{n-i}\binom{n}{i}\\ &=\sum_{j=0}^ma_j\sum_{k=0}^nS(j,k)\sum_{i=k}^n{\color{blue}\binom{i}{k}\binom{n}{i}}k!p^i(1-p)^{n-i}\\ &=\sum_{j=0}^ma_j\sum_{k=0}^nS(j,k)\sum_{i=k}^n{\color{blue}\binom{n}{k}\binom{n-k}{i-k}}k!p^i(1-p)^{n-i}\\ &=\sum_{j=0}^ma_j\sum_{k=0}^nS(j,k)\binom{n}{k}k!p^k{\color{red}\sum_{i'=0}^{n-k}\binom{n-k}{i'}p^{i'}(1-p)^{n-k-i'}}\\ &=\sum_{j=0}^ma_j\sum_{k=0}^nS(j,k)\binom{n}{k}k!p^k{\color{red}1}\\ \end{aligned} i=0n(in)pi(1p)nij=1ijm1=i=0nj=0majijpi(1p)ni(in)=i=0nj=0majk=0iS(j,k)(ki)k!pi(1p)ni(in)=j=0majk=0nS(j,k)i=kn(ki)(in)k!pi(1p)ni=j=0majk=0nS(j,k)i=kn(kn)(iknk)k!pi(1p)ni=j=0majk=0nS(j,k)(kn)k!pki=0nk(ink)pi(1p)nki=j=0majk=0nS(j,k)(kn)k!pk1

这里可以只让 k k k 枚举到 m m m 而不是 n n n !!! 因为 k k k 大于 m m m 之后 k > m ≥ j k>m\ge j k>mj S ( j , k ) = 0 S(j,k)=0 S(j,k)=0,笔者一开始想到了,最后又忘了导致差一点A。。。

= ∑ j = 0 m a j ∑ k = 0 m S ( j , k ) ( n k ) k ! p k = ∑ k = 0 m ( n k ) k ! p k ∑ j = 0 m a j ∑ i = 0 k ( − 1 ) k − i ( k i ) i j = ∑ k = 0 m ( n k ) k ! p k ∑ i = 0 k ( − 1 ) k − i ( k i ) ∑ j = 0 m a j i j = ∑ k = 0 m ( n k ) k ! p k ∑ i = 0 k ( − 1 ) k − i ( k i ) f ( i ) =\sum_{j=0}^ma_j\sum_{k=0}^m{\color{red}S(j,k)}\binom{n}{k}k!p^k\\ =\sum_{k=0}^m\binom{n}{k}k!p^k\sum_{j=0}^ma_j{\color{red}\sum_{i=0}^k(-1)^{k-i}\binom{k}{i}i^j}\\ =\sum_{k=0}^m\binom{n}{k}k!p^k\sum_{i=0}^k(-1)^{k-i}\binom{k}{i}{\color{blue}\sum_{j=0}^ma_ji^j}\\ =\sum_{k=0}^m\binom{n}{k}k!p^k\sum_{i=0}^k(-1)^{k-i}\binom{k}{i}{\color{blue}f(i)}\\ =j=0majk=0mS(j,k)(kn)k!pk=k=0m(kn)k!pkj=0maji=0k(1)ki(ik)ij=k=0m(kn)k!pki=0k(1)ki(ik)j=0majij=k=0m(kn)k!pki=0k(1)ki(ik)f(i)

G ( x ) = ∑ i ≥ 0 ( − 1 ) i i ! x i , F ( x ) = ∑ i ≥ 0 f ( i ) / i ! x i G(x)=\sum_{i\ge0}\cfrac{(-1)^{i}}{i!}x^i,F(x)=\sum_{i\ge0}f(i)/i!x^i G(x)=i0i!(1)ixi,F(x)=i0f(i)/i!xi

则答案为
∑ k = 0 m ( n k ) ( k ! ) 2 p k [ x k ] ( F ∗ G ) ( x ) \sum_{k=0}^m\binom{n}{k}(k!)^2p^k[x^k](F*G)(x)\\ k=0m(kn)(k!)2pk[xk](FG)(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值