【RO】SOCP & SDP

Conic Programming

Standard form of conic programming is as follows
min ⁡ x c ′ x s . t . { A x = b x ∈ K (1) \min_x c'x\\ s.t. \begin{cases} Ax=b\\ x\in K \end{cases}\tag{1} xmincxs.t.{Ax=bxK(1)
where K K K is a closed pointed convex cone with a non-empty interior. The conic programming can also be expressed as
min ⁡ x c ′ x s . t . { A x = b A i x − b i ∈ K i i = 1 , 2 , … , m (2) \min_x c'x\\ s.t. \begin{cases} Ax=b\\ A_ix-b_i\in K_i\quad i=1,2,\dots, m \end{cases}\tag{2} xmincxs.t.{Ax=bAixbiKii=1,2,,m(2)

SOCP

Second-order cones (Lorentz cones) of dimension k k k are defined as
C k = { [ u t ] ∣ u ∈ R k − 1 , t ∈ R , ∥ u ∥ 2 ≤ t } C_k=\bigg\{ \bigg[ \begin{matrix} u\\ t \end{matrix} \bigg] \bigg| u\in\mathbb{R}^{k-1}, t\in\mathbb{R}, \lVert u\rVert_2\leq t \bigg\} Ck={[ut]uRk1,tR,u2t}
where ∥ u ∥ 2 = u ′ u \lVert u\rVert_2=\sqrt{u'u} u2=uu .
And the conic programming can be written as
min ⁡ x c ′ x s . t . { A x = b ∥ A i x + b i ∥ ≤ c i ′ x + d i , i = 1 , 2 , … , m (3) \min_x c'x\\ s.t. \begin{cases} Ax=b\\ \lVert A_ix+b_i\rVert\leq c_i'x+d_i, i=1,2,\dots, m \end{cases}\tag{3} xmincxs.t.{Ax=bAix+bicix+di,i=1,2,,m(3)
where A i ∈ R ( m i − 1 ) × n , b i ∈ R ( m i − 1 ) , c i ∈ R n , d i ∈ R A_i\in\mathbb{R}^{(m_i-1)\times n}, b_i\in\mathbb{R}^{(m_i-1)}, c_i\in\mathbb{R}^n, d_i\in\mathbb{R} AiR(mi1)×n,biR(mi1),ciRn,diR. The inequality constraint is equivalent to
[ A i c i ′ ] x + [ b i d i ] ∈ C m i \left[ \begin{matrix} A_i\\ c_i' \end{matrix} \right]x+ \left[ \begin{matrix} b_i\\ d_i \end{matrix} \right]\in C_{mi} [Aici]x+[bidi]Cmi
The loss risk constraint is defined to limit the probability of portfolio return r p r_p rp blow a threshold α \alpha α is denoted as
P r ( r p ≤ α ) ≤ β Pr(r_p\leq \alpha)\leq \beta Pr(rpα)β
where β \beta β sets the maximum probability. By standardizing the original value
P r ( r p ≤ α ) = Φ ( α − μ ′ w w ′ Σ w ) ≤ β α − μ ′ w w ′ Σ w ≤ Φ − 1 ( β ) Pr(r_p\leq \alpha)=\Phi(\frac{\alpha-\mu'w}{\sqrt{w'\Sigma w}})\leq \beta\\ \frac{\alpha-\mu'w}{\sqrt{w'\Sigma w}}\leq \Phi^{-1}(\beta) Pr(rpα)=Φ(wΣw αμw)βwΣw αμwΦ1(β)
and can be reformulated into a second-order cone constraint as
Φ − 1 ( β ) ∥ Σ 1 / 2 w ∥ 2 ≥ μ ′ w + α \Phi^{-1}(\beta)\lVert \Sigma^{1/2}w\rVert_2\geq \mu'w+\alpha Φ1(β)Σ1/2w2μw+α
Set β ≤ 1 / 2 \beta\leq 1/2 β1/2, we have the following portfolio problem
max ⁡ x μ ′ w s . t . { Φ − 1 ( β ) ∥ Σ 1 / 2 w ∥ 2 ≥ − μ ′ w + α w ′ 1 = 1 x ≥ 0 (4) \max_x \mu'w\\ s.t. \begin{cases} \Phi^{-1}(\beta)\lVert\Sigma^{1/2}w\rVert_2\geq -\mu'w+\alpha\\ w'\mathbf{1}=1\\ x\geq 0 \end{cases}\tag{4} xmaxμws.t.Φ1(β)Σ1/2w2μw+αw1=1x0(4)

Semidefinite Programming

SDP is the most inclusive formulation among the three types of conic optimization programs and is written in the following form:
min ⁡ x c ′ x s . t . { A x = b F 0 + x 1 F 1 + ⋯ + x n F n ⪰ 0 (5) \min_x c'x\\ s.t. \begin{cases} Ax=b\\ F_0+x_1F_1+\dots+x_nF_n\succeq 0 \end{cases}\tag{5} xmincxs.t.{Ax=bF0+x1F1++xnFn0(5)
where symmertic matrices F 0 , … , F n ∈ S m F_0,\dots, F_n\in S^m F0,,FnSm. An LMI defined as
F ( x ) = F 0 + x 1 F 1 + ⋯ + x n F n F(x)=F_0+x_1F_1+\dots+x_nF_n F(x)=F0+x1F1++xnFn

SOCP → \to SDP

Consider a matrix X ∈ S n X\in \mathcal{S}^n XSn that is partitioned into submatrices A , B A, B A,B and C C C.
X = [ A B B ′ C ] X= \left[ \begin{matrix} A & B\\ B' & C \end{matrix} \right] X=[ABBC]
On basis of Schur complements, it holds for A ≻ 0 A\succ 0 A0 that X ⪰ 0 X\succeq 0 X0 iff
C − B ′ A − 1 B ≥ 0 C-B'A^{-1}B\geq 0 CBA1B0
SOCP ( 3 ) (3) (3) can be converted to the following SDP form:
min ⁡ x c ′ x s . t . { A x = b [ ( c i T x + d i ) I A i x + b i ( A i x + b i ) ′ c i T x + d i ] ⪰ 0 \min_x c'x\\ s.t. \begin{cases} Ax=b\\ \left[ \begin{matrix} (c_i^Tx+d_i)I & A_ix+b_i\\ (A_ix+b_i)' & c_i^Tx+d_i \end{matrix} \right]\succeq 0 \end{cases} xmincxs.t.Ax=b[(ciTx+di)I(Aix+bi)Aix+biciTx+di]0

Reference

ROBUST EQUITY PORTFOLIO MANAGEMENT+WEBSITE

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
无线通信MISO(Multiple-Input Single-Output)系统是指在多个发射天线和一个接收天线的情况下进行通信的系统。在MISO系统中,多个用户可以同时发送数据到接收器,但由于无线信道的有限资源,每个用户在发送数据时需要控制发射功率,以避免干扰其他用户和消耗过多的功率。 多用户的发射功率最小化问题可以通过优化算法来解决。使用MATLAB可以通过SOCP(Second Order Cone Programming)、SDP(Semidefinite Programming)以及KKT(Karush-Kuhn-Tucker)条件来解决这个问题。 以下是一个使用SOCP方法求解多用户发射功率最小化问题的MATLAB代码示例: ```matlab % 定义系统参数 N = 3; % 用户数量 H = 1 + randn(N); % 信道增益矩阵,假设是随机生成的 P = sdpvar(N,1); % 发射功率变量 % 定义优化问题 obj = sum(P); % 目标函数:发射功率之和的最小化 constraints = [norm(H*sqrt(P), 'fro') <= 1]; % 约束条件:每个用户的信号幅度不超过1 ops = sdpsettings('solver', 'sedumi'); % 求解优化问题 sol = optimize(constraints, obj, ops); % 输出结果 if sol.problem == 0 disp('优化成功!'); disp(['最小化的发射功率为:', num2str(value(obj))]); disp(['每个用户的发射功率为:', num2str(value(P))]); else disp('优化失败...'); end ``` 需要注意的是,以上代码仅是一个示例,并不具备实际应用的完整性。在实际应用中,需要根据具体问题进行参数和约束条件的定义,并选择合适的优化算法和求解器来获得最优解决方案。同时,还需要考虑到系统的实际性能需求和资源限制,以便得到合适的发射功率分配方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

minuxAE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值