半定规划(SDP) 2021-11-08


常见的凸优化问题包括:线性规划(LP,Linear Program),二次规划(QP,Quadratic Program),二次约束的二次规划(QCCP,Quadratically Contrained Quadratic Program),半正定规划(SDP,Semidefinite Program)

凸优化简单回顾

凸优化问题(OPT,convex optimization problem)指定义在凸集中的凸函数最优化的问题。一般形式为:
min ⁡ x f ( x )    s . t .   x ∈ C \min_x f(x) \\ ~~\mathrm {s.t. } ~ x \in \mathbb{C} xminf(x)  s.t. xC
其中 f f f 是一个凸函数, C \mathbb{C} C 是一个凸集, x x x 是优化变量。

  • 凸优化问题的优势体现在:
    1、凸优化问题的局部最优解就是全局最优解
    2、很多非凸问题都可以被等价转化为凸优化问题或者被近似为凸优化问题
    3、凸优化问题的研究较为成熟,当一个具体被归为一个凸优化问题,基本可以确定该问题是可被求解的

线性规划 (LP)

  • 线性目标,线性约束,向量变量 x x x为非负实向量。
  • 问题形式:
    min ⁡ x a 0 x                                      s . t .    a p x = b p   ( p = 1 , ⋯   , m ) ,                        0 ≤ x ∈ R n . \min_x a_0 x\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\mathrm {s.t. } ~~ a_px = b_p ~(p = 1,\cdots,m), \\ ~~~~~~~~~~~~~~~~~~~~~~0 \leq x \in R^n. xmina0x                                    s.t.  apx=bp (p=1,,m),                      0xRn.

二次规划 (QP)

  • 目标函数变量最高为二次项,线性约束,向量变量 x x x为非负实向量。
  • 问题形式:
    min ⁡ x 1 2 x T P x + q T x + c s . t .    A x = b ,          G x ⪯ h . \min_x \frac{1}{2} x^TPx +q^T x + c \\ \mathrm {s.t. } ~~ Ax = b, \\ ~~~~~~~~Gx \preceq h. xmin21xTPx+qTx+cs.t.  Ax=b,        Gxh.
    当约束条件变为二次的时,问题就变成了QCQP(Quadratical Constraint Quadratic Programming)问题了:
    min ⁡ x 1 2 x T P 0 x + q 0 T x + c 0                                 s . t .    1 2 x T P i x + q i T x + c i , ( i = 1 , ⋯   , m ) , A x = b . \min_x \frac{1}{2} x^TP_0x +q_0^T x + c_0 \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\mathrm {s.t. } ~~ \frac{1}{2} x^TP_i x +q_i ^T x + c_i, (i=1,\cdots,m),\\ Ax = b. xmin21xTP0x+q0Tx+c0                               s.t.  21xTPix+qiTx+ci,(i=1,,m),Ax=b.

二阶锥规划 ( SOCP)

SOCP 全称 Second-Order Cone Programming。

  • 问题形式为:
    min ⁡ x f T x                                                            s . t .    ∥ A i x + b i ∥ 2 ≤ c i T x + d i , ( i = 1 , ⋯   , m ) ,                 F x = g . \min_x f^T x \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\mathrm {s.t. } ~~ \| A_i x+b_i \|_2 \leq c_i ^T x + d_i, (i=1,\cdots,m),\\ ~~~~~~~~~~~~~~~Fx = g. xminfTx                                                          s.t.  Aix+bi2ciTx+di,(i=1,,m),               Fx=g.
    其中 x ∈ R n x \in R^n xRn 是优化变量, ∥ A i x + b i ∥ 2 ≤ c i T x + d i \| A_i x+b_i \|_2 \leq c_i ^T x + d_i Aix+bi2ciTx+di 是二阶锥约束。
  • c i = 0 c_i=0 ci=0,SOCP等价于QCQP问题;SOCP是更一般的QCQP问题。
  • A i = 0 A_i=0 Ai=0,SOCP等价于LP问题。

半定规划(SDP)

  • 线性目标,线性约束,对称矩阵变量 X X X为半正定实矩阵。
  • 问题形式:
    min ⁡ X A 0 X                                      s . t .    A p X = b p   ( p = 1 , ⋯   , m ) ,                      0 ⪯ X ∈ S n . \min_X A_0 X\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\mathrm {s.t. } ~~ A_pX = b_p ~(p = 1,\cdots,m), \\ ~~~~~~~~~~~~~~~~~~~~0 \preceq X \in S^n. XminA0X                                    s.t.  ApX=bp (p=1,,m),                    0XSn.
    其中 S n S^n Sn为n阶全体实对称矩阵的线性空间, A p A_p Ap为n阶实对称矩阵, b p   ( p = 1 , ⋯   , m ) b_p~(p=1,\cdots,m) bp (p=1,,m)是实数, X ∈ S n X \in S^n XSn 是n阶对称矩阵变量。
  • A p X = ∑ i = 1 n ∑ j = 1 n [ A P ] i j X i j A_pX =\sum_{i=1}^n\sum_{j=1}^n [A_P]_{ij}X_{ij} ApX=i=1nj=1n[AP]ijXij
  • SDP可视为LP的推广,LP的向量分量不等式被矩阵不等式代替。根据半定矩阵的定义知,SDP也可视为一个线性约束的关于变量的无限集的LP解LP的原始对偶内点法可以推广到SDP
  • LP的可行域为有限个顶点的凸多面体,SDP的可行域为一个曲面体

连续性最优化问题的分类

参考链接

[1]. https://blog.csdn.net/sdgyfbtnyj/article/details/100101233
[2]. Stephen Boyd,《Convex Optimization》
[3]. 算法参考 添加链接描述

  • 12
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SDP算法(半定规划松弛法)是一种用于求解二次优化问题的方法。它使用半正定松弛来将原始的离散问题转化为半定规划问题。引用中提到了一种基于块坐标下降方法的SDP求解算法,旨在降低计算复杂度。此外,引用和引用提供了一些经典著作和博客文章,可供进一步了解SDP算法的详细细节和示例代码。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [SDP半正定规划的低复杂度求解:基于块坐标下降(Block Coordinate Descent)](https://blog.csdn.net/weixin_39274659/article/details/121834231)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [经典的SDR算法: 用半正定松弛法 ( Semidefinite Relaxation) 求解二次优化问题](https://blog.csdn.net/shixin_0125/article/details/125117466)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [半正定松弛法(SDR)2021-11-06](https://blog.csdn.net/weixin_44655342/article/details/121175761)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值