分布鲁棒文章阅读:Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach(2003年)
1、Introduction
考虑一个单周期的投资组合优化问题:
资产i的收益率百分比等于xi, x是一个随机的n维向量。对于给定的分配向量w,投资组合的总收益是随机变量
一些经典的风险度量:
(1)Markowitz认为:假设收益向量的均值和协方差矩阵都是已知的,风险定义为收益的方差。在平均回报的下限下最小化风险会导致(***问:收益的方差为何是下式左边的形式?*** 答:Markowitz就是这么认为的)
其中u是平均收益的预定义下界。
(2)Value-at-Risk (VaR):VaR被定义为最小水平r,使得投资组合损失−r(w,x)超过r的概率低于E:
与Markowitz框架仅需要了解收益分布的一阶矩和二阶矩,而上述VaR则假定完全知道整个分布。
当这种分布是高斯分布时(均值和协方差给定),那么VaR可以写为:(***是怎么写成这样的???*** 就是由高斯分布化过来的 具体不知)
实际上,收益的分布不是高斯分布的。然后可以使用切比雪夫界来找到投资组合损失- r(w,x)超过r的概率的上界,但该界限基于对分布的前两个矩的唯一了解,并得出公式(2),现在为
κ
(
ϵ
)
=
1
/
ϵ
\kappa(\epsilon) = {1/\sqrt {\epsilon}}
κ(ϵ)=1/ϵ。 实际上,经典的切比雪夫界限是不精确的,这意味着没有达到上限。
(3)在上述所有情况下,使可容许投资组合的VaR最小化的问题采用以下形式:
其中k是一个适当的“风险因素”,它取决于对收益分布的先验假设(高斯分布,给定矩信息的任意分布,等等)。当k>=0时(在高斯情况下当且仅当
κ
∈
(
0
,
1
/
2
]
\kappa\in(0,1/2]
κ∈(0,1/2]时为真),V (w)是w的凸函数,可以很容易地全局解决上述问题,例如,凸二次锥规划的内点技术(SOCP;参见,Lobo et al. 1998)。
***出于多种原因,经典框架可能不合适。 显然,当收益的分布显示出“厚尾”特征时,方差不是恰当的风险度量。 另一方面,VaR的精确计算需要对分布有完整的了解,即使有完全的分布信息,VaR的计算也可能是在高维空间中的数值积分,这在计算上很麻烦。 此外,诸如蒙特卡洛模拟(Linsmeier and Pearson 1996)之类的数字技术并不容易扩展到组合设计。***
本文方法是假设收益的真实分布只是部分已知。用P表示允许分布的集合。例如,P可以由具有均值
x
^
\hat x
x^和协方差矩阵
Γ
\Gamma
Γ的一组高斯分布组成,其中
x
^
\hat x
x^和
Γ
\Gamma
Γ仅在给定的分量范围内是已知的。
对于给定的损失概率水平
ϵ
∈
(
0
,
1
]
\epsilon\in(0,1]
ϵ∈(0,1]和给定的投资组合
ω
∈
(
W
)
\omega\in(W)
ω∈(W),我们针对概率分布P的集合定义最坏情况的风险价值为:
本文的主要结果是,对于一类允许概率分布集P,通过求解一个半定规划问题(SDP),可以精确地解决最坏情况VaR的计算和优化问题。SDPs是凸的、有限维的问题,对于这些问题,最近出现了非常有效的多项式时间内点方法,以及用于大规模(稀疏)问题的束方法。
当均值和协方差矩阵不确定但有界时,本文的解决方案不仅产生一个最优投资组合的最坏情况VaR,而且会同时计算一个半正定协方差矩阵和一个均值向量,满足边界,是我们的问题的最优。因此,为了计算或优化VaR,我们选择最谨慎的协方差矩阵和均值向量。
文章结构:本文的结构如下。在§2中,当均值和协方差矩阵均已知时,我们考虑最坏情况下的VaR问题,然后将分析扩展到仅在给定凸集中才知道均值和协方差(或第二矩)矩阵的情况。然后,将结果专门化为两种范围:多主题和逐分量。在§3中,研究了由因素模型引起的不确定性结构。表明,可以通过SDP以及最坏情况下的VaR的上限来分析因子协方差数据以及灵敏度矩阵的不确定性。第4节专门讨论了§2中研究的问题的几种变体:利用支持信息,通过相对熵约束排除离散的概率分布,处理多个VaR约束。在§5中提供了数值说明。
2、
当收益的概率分布的矩只已知属于一个给定集合,概率分布是任意的情况下的最坏情况VaR的问题
(1)先假设收益的分布的均值向量和协方差矩阵是精确已知的
以下定理提供了当精确知道矩时最坏情况下VaR的几种等价表示。
(1)
(2)
(3)
(4)
(5)
命题1和2之间的等价关系将在下面证明,但也可以通过应用Bertsimas和Popescu(2000)中给出的(精确)多元切比雪夫界来获得。命题1、2的等价性表明这意味着在
ω
∈
(
W
)
\omega\in(W)
ω∈(W)上优化VaR的问题等同于:
上面问题可转换为二阶锥规划问题(***如何转化为SOCP???*** 就是通过拉格朗日对偶转化过来的)。SOCP是SDP的特殊形式,其求解效率接近于线性规划。
首先证明命题1与命题3的等价性,然后证明命题1与命题3等价于命题2。命题4与命题2中给出的解析式是直接等价的。最后,命题4和命题5之间的等价是由简单的SDP对偶性得到的。
(1)证明命题(1)与(3)等价:
除以
τ
\tau
τ的原因是:含有
τ
\tau
τ时时非凸的,除后转化为凸的
(2)接着论文中又开始计算上述SDP问题的对偶:(已经转化为半正定规划了,为什么还继续求对偶??? 答:为了将SDP转化为SDCP)
先写出拉格朗日函数:
然后去掉上述约束中的u,v,X,使等式变成不等式:
在上面的不等式约束中,可以注意到:
表明:
若y=1,那么有v=
x
^
\hat x
x^,目标函数就变为:
−
x
^
T
ω
-\hat x^{T}\omega
−x^Tω,现在假设y<1,那么约束(18)等价于:
证明命题2(***下面这个式子是怎么转化过来的???***))
具体过程如下:
(2)Convex Moment Uncertainty
考虑仅已知均值和协方差属于一个给定的凸集 U U U,其他的概率分布是任意的。例如, U U U可以描述均值和协方差的上下边界, ( T , x ^ ) (\Tau,\hat x) (T,x^)是 U U U中的一个点,且 T > 0 \Tau>0 T>0,用 U + U_+ U+表示集合 { ( T , x ^ ) ∈ U ∣ T > 0 } \{(\Tau,\hat x) \in U|\Tau>0\} {(T,x^)∈U∣T>0},假定 U + U_+ U+是有界的,像之前一样用P表示相应的概率分布集。
鉴于定理1的命题1和3之间的等价关系,得出,当且仅当对于每个
x
∈
R
n
x\in\R^n
x∈Rn和
(
T
,
x
^
)
∈
U
+
(\Tau,\hat x) \in U_+
(T,x^)∈U+使得条件(10)(就是命题4)成立,最差情况下的VaR小于
γ
\gamma
γ ,我们有
−
x
T
ω
>
=
γ
-x^T\omega>=\gamma
−xTω>=γ 。 因此,在上述条件下使
T
\Tau
T和
x
^
\hat x
x^变量足以计算最坏情况的VaR即可:
接着用
U
U
U代替
U
+
U_+
U+得到下面的定理2:
解决问题(21)得出均值向量
x
^
\hat x
x^和协方差矩阵
T
\Tau
T的选择,该矩阵对应于与先验信息
(
T
,
x
^
)
∈
U
(\Tau,\hat x) \in U
(T,x^)∈U的最坏情况的选择。
为了优化分配向量w,考虑问题:(此问题的可解性取决于集合
U
U
U与
W
W
W的结构))
使用公式(11)(就是命题5))获得最坏情况下的VaR的替代表达式。(***是怎么得到的???用对偶?***))
当且仅当对于每个
(
T
,
x
^
)
∈
U
(\Tau,\hat x) \in U
(T,x^)∈U且
T
>
0
\Tau>0
T>0,存在
Λ
,
ν
\Lambda,\nu
Λ,ν,使得公式(11)(就是命题5))成立。 因此,最坏情况下的VaR由最大-最小问题为:
由于上述问题的可行集是紧的和凸的,对于固定的
Λ
,
ν
\Lambda,\nu
Λ,ν目标关于
T
,
x
^
\Tau,\hat x
T,x^是线性的(反之亦然)。所以,可以交换“min”和“max”,并通过解决min-max问题来优化最坏情况的VaR:
最后,定理3: