协方差
通常,在提到协方差的时候,需要对其进一步区分。(1)随机变量的协方差。跟数学期望、方差一样,是分布的一个总体参数。(2)样本的协方差。是样本集的一个统计量,可作为联合分布总体参数的一个估计。在实际中计算的通常是样本的协方差。
随机变量的协方差
在概率论和统计中,协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。定义如下。
cov(X,Y)=E[(X−E[X])(Y−E[Y])]
当X,Y是同一个随机变量时,X与其自身的协方差就是X的方差,可以说方差是协方差的一个特例。
cov(X,X)=E[(X−E[X])(X−E[X])]
或
var(X)=cov(X,X)=E[(X−E[X])2]
由于随机变量的取值范围不同,两个协方差不具备可比性。如X,Y,Z分别是三个随机变量,想要比较X与Y的线性相关程度强,还是X与Z的线性相关程度强,通过cov(X,Y)与cov(X,Z)无法直接比较。定义相关系数η为
通过X的方差var(X)与Y的方差var(Y)对协方差cov(X,Y)归一化,得到相关系数η,η的取值范围是[−1,1]。1表示完全线性相关,−1表示完全线性负相关,0表示线性无关。线性无关并不代表完全无关,更不代表相互独立。