【问题描述】
X星球的考古学家发现了一批古代留下来的密码。
这些密码是由A、B、C、D 四种植物的种子串成的序列。
仔细分析发现,这些密码串当初应该是前后对称的(也就是我们说的镜像串)。
由于年代久远,其中许多种子脱落了,因而可能会失去镜像的特征。你的任务是:
给定一个现在看到的密码串,计算一下从当初的状态,它要至少脱落多少个种子,才可能会变成现在的样子。输入一行,表示现在看到的密码串(长度不大于1000)
要求输出一个正整数,表示至少脱落了多少个种子。例如,输入:
ABCBA
则程序应该输出:
0
再例如,输入:
ABDCDCBABC
则程序应该输出:
3
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。提交时,注意选择所期望的编译器类型。
方法一:
首先输入字符串s,令i = 字符串开端,j = 字符串末尾,
如果 , 那就i++ , j--.
如果 ,两种办法: i 左边补上s[j], j--; j 右边补上s[i] ,i++;
其实没必要真的去补,比如,i 左边补s[j]时,我们可以假设补上了,只需要让j--,i 不变。
这种思路可以用递归实现。
但是这种方法的的时间复杂度是很高的,比如字符串为ABCDEF,那要补成ABCDEFEDCBA,
由此可见,最坏的情况下,最深要搜索到第s.size()层,时间复杂度为。
所以当字符串长度为30的时候,时间复杂度 ≈ ,就要差不多10秒才能跑出来。
但是此题字符串长度最长为1000,这种方法就不可取了,但是分而治之的想法是很好的。
经测试,这种方法能得43分。
#include <iostream>
using namespace std;
string s;
int dfs(int left, int right)
{
while (s[left] == s[right])
{
left++;
right--;
}
if (left >= right)
return 0;
return min(dfs(left + 1, right) + 1, dfs(left, right - 1) + 1);//返回两条支路中,短的那条
}
int main()
{
cin >> s;
cout << dfs(0, s.size() - 1) << endl;
//system("pause");
return 0;
}
方法二:
① 把原字符串倒转过来
② 从s1中的A开始, 在s2中 找对应的 A
③ 这时候,如果让这两个A对称,可以把 CB 补到原字符串的前面
④ 然后到s1中的B,在s2中找对应的B
直接就找到了,说明两个B的位置是对称的,继续
⑤接下来是D,
可以发现,在s2中,隔着一个C,才能要找到D。
说明要想两个D对称,要在把C补到 D前面。
这时候s1已经是回文串了,一共补了三个字母。
这是用上找下,我们也可以用下找上,
先找,
然后补, ,因为s2是s1的翻转,为了方便观察,也可以补在s2的前面,是一样的
再找,
再补,,s2已经是回文串了,补了5个字母;
当然,也不用一味地用上找下,或者用下找上,也可以交叉着来
比如:
第一步用下找上
下一步可以这样用用上找下:
s2变成了回文串,用了8个字母。
那怎么样找,才是最优解呢,
不断尝试后,我们发现了规律:
找到s1和s2的最长公共子序列,
配不上的CB和C,我们把它挪上去。
这个就是正确答案了。
s1 和 s2 的 最长公共子序列的长度 lcs = 7 , 然后 字符串的长度 len = 10, len - lcs = 3 就是正确答案。
问题就转换成了求最长公共子序列:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int dp[1005][1005];
int main()
{
string s1, s2;
cin >> s1;
s2 = s1;
reverse(s2.begin(), s2.end());
int len = s1.size();
for (int i = 1; i <= len; i++)
{
for (int j = 1; j <= len; j++)
{
if (s1[i - 1] == s2[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
cout << len - dp[len][len] << endl;
//system("pause");
return 0;
}
方法一虽然不能AC,但是在考场上应该是较为容易想到的,
方法二虽然能AC,但是要想到这是一个最长公共子序列的题目,对于一般人而言,,应该是很难想到的吧。。。