Copilot 体验(python)

基本使用方法

  1. # 提示
  2. def xxx():"""提示"""
  3. 也可以写到一行中间的时候等待 # plot confusion matrix def xxx(): sns.

注意事项

实现复杂功能时,需要人工引导,写到一半,来回按 Tab Backspace 触发提示
直接一个注释搞定不太可能,除非是一些简单和常用的功能,如文件加载保存,对象转换,日期处理,常用函数等等

风险

如果开启 Allow public code ,可能有版权问题
模型可能生成有 bug 的代码


生成代码

import numpy as np
import pandas as pd

# get max 5 numbers from a list
def get_max_5(list):
    return sorted(list, reverse=True)[:5]

# train keras model with data

def train_model(data):
    # split data into train and test
    train_data = data[:int(len(data) * 0.8)]
    test_data = data[int(len(data) * 0.8):]

    # get features and labels
    train_features = train_data.iloc[:, :-1].values
    train_labels = train_data.iloc[:, -1].values
    test_features = test_data.iloc[:, :-1].values
    test_labels = test_data.iloc[:, -1].values

    # reshape features
    train_features = train_features.reshape(train_features.shape[0], 1, train_features.shape[1])
    test_features = test_features.reshape(test_features.shape[0], 1, test_features.shape[1])

    # import keras
    

# get VGG-19 model

def get_model():
    # import keras
    from keras.applications import VGG19
    

# confusion matrix
def get_confusion_matrix(pred, true):
    # import sklearn
    from sklearn.metrics import confusion_matrix
    return confusion_matrix(pred, true)

# get now time
def get_now_time():
    import datetime
    return datetime.datetime.now()

# get now time in string format
def get_now_time_str():
    import datetime
    return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

# get BERT model keras
def get_bert_model():
    # import keras
    from keras.applications import BERT

# plot heatmap with folium
def plot_heatmap(data, title, filename):
    # import folium
    from folium import plugins
    from folium.plugins import HeatMap
    import folium
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns

# convert list to dataframe
def list_to_df(list):
    return pd.DataFrame(list)

# # add 1 to 1000
# def add_1_to_1000():
#     for i in range(1000):
#         print(i + 1)
    
# hash function
def hash_function(str):
    import hashlib
    return hashlib.sha256(str.encode()).hexdigest()

# TSP
def tsp(data):
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import random
    import math
    import time
    import itertools
    import copy
    import matplotlib.pyplot as plt

# crawl a web page
def crawl_web(url):
    import requests
    return requests.get(url)

# load keras model from pickle
def load_model(filename):
    import pickle
    with open(filename, 'rb') as f:
        return pickle.load(f)

# save keras model to pickle
def save_model(model, filename):
    import pickle
    with open(filename, 'wb') as f:
        pickle.dump(model, f)

# load keras model 
def load_keras_model(filename):
    import keras
    return keras.models.load_model(filename)

# display audio
def display_audio(filename):
    # load file
    file = open(filename, 'rb')
    # create an audio object
    audio = AudioSegment.from_file(file)
    # play the audio
    play(audio)

# plot heatmap
def plot_heatmap(data):
    import seaborn as sns
    import matplotlib.pyplot as plt
    plt.figure()
    sns.heatmap(data, cmap='Blues', annot=True, fmt='.2f')
    plt.show()

# create a random numpy array
def create_random_numpy_array(shape):
    return np.random.rand(*shape)

# baidu url
url = 'https://www.baidu.com'


# main function
if __name__ == "__main__":
    data = create_random_numpy_array(shape=(2, 3))
    plot_heatmap(data)

在 iris 上训练一个 XGBoost

全程只导入基本的包、打注释和改一些小瑕疵

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.model_selection as skl_ms
import xgboost as xgb


# load iris data from sklearn
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target


# split train test data
X_train, X_test, y_train, y_test = skl_ms.train_test_split(X, y, test_size=0.2, random_state=0)


# train a xgb model CV
xgb_model = xgb.XGBClassifier()
xgb_model.fit(X_train, y_train)

# train a xgb model with a gridsearch
parameters = {'max_depth': [3, 4, 5],
                'learning_rate': [0.1, 0.05, 0.02],
                'n_estimators': [50, 100, 200]}
xgb_gridsearch = skl_ms.GridSearchCV(xgb_model, parameters, cv=5)
xgb_gridsearch.fit(X_train, y_train)
print(xgb_gridsearch.best_params_)
print(xgb_gridsearch.best_score_)

# plot a confusion matrix
from sklearn.metrics import confusion_matrix
y_pred = xgb_gridsearch.predict(X_test)
cm = confusion_matrix(y_test, y_pred)    
plt.figure(figsize=(10,7))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
tick_marks = np.arange(3)
plt.xticks(tick_marks, ['setosa', 'versicolor', 'virginica'], rotation=45)
plt.yticks(tick_marks, ['setosa', 'versicolor', 'virginica'])
plt.show()


混淆矩阵

# plot xgb feature importance
importance = xgb_gridsearch.best_estimator_.feature_importances_
feature_names = iris.feature_names
feature_importance = pd.DataFrame({'feature': feature_names, 'importance': importance})
feature_importance = feature_importance.sort_values('importance', ascending=False)
plt.figure(figsize=(10,7))
plt.barh(range(len(feature_importance)), feature_importance.importance, align='center')
plt.yticks(range(len(feature_importance)), feature_importance.feature)
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('XGBoost Feature Importance')
plt.show()

特征重要性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值