Hierarchical Object Detection with Deep Reinforcement Learning论文笔记

在这里插入图片描述
这是一篇NIPS2016中有关目标检测的文章,虽然有点老,但是其free anchor的思想还是值得借鉴。尤其今年和free anchor相关的目标检测研究大火,但其大多是从先探测物体的中心点或者是关键点,由点到面从而学习到精确的轮廓或者位置信息。

一、研究动机

受人眼观察世界方式的启发:我们首先将我们的视线集中在一幅图片的显著位置,通过对该区域的信息提取有助于将我们的视线转移到相关区域直到完全理解图片将图片所有目标搜索完毕。同样对于目标检测其而言,在大幅图片上聚焦于信息丰富且有目标物集中的区域并且将其放大,通过训练一个智能体能够在一个图片中实现定义的五个窗口选出一个进行放大检测,该放大区域也会同样地延续刚才的选择步骤,如此递归直至将目标物框出。整个过程将图片按层次结构进行不断切分放大检测。
这和基于滑窗的目标检测方法不同之处在于:滑窗并没有考虑图片块之间的联系,而是对每个块展开独立的分析。而我们的智能体通过层次结构来表示图片从而很好的考虑到块之间的联系。与此同时不需要非极大值抑制的后处理,关键是减少了检测区域。

二、研究贡献

(1)采用一种自顶向下的树状搜索机制指导智能体搜索目标位置,对比了两种窗口设置的方式:有重叠和无重叠,探究了层次结构的设定与放大区域个数的设置对检测效果的影响。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值