连续Fourier变换及其逆变换的计算表达式

连续Fourier变换及其逆变换的计算表达式

一、关键计算式

若函数 f ( t ) f(t) f(t)满足Fourier积分定理的条件,则在 f ( t ) f(t) f(t)的连续点处, 有
f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − j ω τ d τ ] e j ω t d ω    f(t) = \frac{1}{{2{\rm{\pi }}}}\int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^ {+\infty} {f(\tau ){e^{ - j\omega \tau }}d\tau } } \right]{e^{j\omega t}}d\omega } \,\, f(t)=2π1+[+f(τ)eτdτ]etdω

:该式有助于整体记忆Fourier变换及其逆变换计算公式。

二、象函数

F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(\omega)= \int_ {-\infty }^ {+\infty} {f(t){e^{ - j\omega t}}dt} F(ω)=+f(t)etdt,记作: F ( ω ) = F [ f ( t ) ] F(\omega ) = \mathscr F\left[ {f\left( t \right)} \right] F(ω)=F[f(t)] F ( ω ) F(\omega ) F(ω)叫做 f ( t ) f\left( t \right) f(t)象函数

三、象原函数

   f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t d ω \,\,f(t) = \frac{1}{{2{\rm{\pi }}}}\int_{ - \infty }^{ + \infty } {F(\omega ){e^{j\omega t}}d\omega } f(t)=2π1+F(ω)etdω,记作: f ( t ) =   F − 1 [ F ( ω ) ] f\left( t \right) = \,{\mathscr F^{ - 1}}\left[ {F(\omega )} \right] f(t)=F1[F(ω)],则称: f ( t ) f(t) f(t)叫做 F ( ω ) F(\omega) F(ω)象原函数

象函数 F ( ω ) F(\omega) F(ω)和象原函数 f ( t ) f (t) f(t) 构成了一个Fourier变换对。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值