一维连续傅里叶变换和逆变换公式的一种推导

本文详细介绍了如何推导一维连续傅里叶变换及其逆变换公式。首先确立了函数的周期性和积分性质,接着通过欧拉公式展开并化简傅里叶级数,然后通过黎曼积分思想推广到无穷积分,逐步求得变换和逆变换的表达式。总结阶段给出了最终的傅里叶变换和逆变换公式。
摘要由CSDN通过智能技术生成

条件确立

  首先,若函数 f ( t ) f\left( t \right) f(t) 2 T 2T 2T为周期且在 [ − T , T ] \left[ -T,T \right] [T,T]上可积,则
a n = 1 T ∫ − T T f ( t ) cos ⁡ n π t T d t ,   n = 0 , 1 , ⋯ b n = 1 T ∫ − T T f ( t ) sin ⁡ n π t T d t ,   n = 1 , 2 , ⋯ \begin{aligned} & { {a}_{n}}=\frac{1}{T}\int_{-T}^{T}{f\left( t \right)\cos \frac{n\pi t}{T}dt},\text{ }n=0,1,\cdots \\ & { {b}_{n}}=\frac{1}{T}\int_{-T}^{T}{f\left( t \right)\sin \frac{n\pi t}{T}dt},\text{ }n=1,2,\cdots \\ \end{aligned} an=T1TTf(t)cosTnπtdt, n=0,1,bn=T1TTf(t)sinTnπtdt, n=1,2,
存在,是 f ( t ) f\left( t \right) f(t)关于三角函数系的Fourier系数,
f ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π t T + b n sin ⁡ n π t T ) f \sim \frac{ { {a}_{0}}}{2}+\sum\limits_{n=1}^{\infty }{\left( { {a}_{n}}\cos \frac{n\pi t}{T}+{ {b}_{n}}\sin \frac{n\pi t}{T} \right)} f2a0+n=1(ancosTnπt+bnsinTnπt)
f ( t ) f\left( t \right) f(t)关于三角函数系的Fourier级数。


  其次,由Fourier级数的收敛定理,若 2 T 2T 2T为周期的函数 f ( t ) f\left( t \right) f(t) [ − T , T ] \left[ -T,T \right] [T,T]上按段光滑(① f ( t ) f\left( t \right) f(t) [ − T , T ] \left[ -T,T \right] [T,T]上至多有有限个第一类间断点;② f ′ ( t ) f'\left( t \right) f(t) [ − T , T ] \left[ -T,T \right] [T,T]上除了至多有限个点外都存在且连续,且在这些点上 f ′ ( t ) f'\left( t \right) f(t)的左右极限都存在),则在每一点 t ∈ [ − T , T ] t\in \left[ -T,T \right] t[T,T] f ( t ) f\left( t \right) f(t)的Fourier级数收敛于 f ( t ) f\left( t \right) f(t)在点 t t t的左右极限的算术平均值,即有
f ( t + 0 ) + f ( t − 0 ) 2 = lim ⁡ Δ t → 0 +   f ( t + Δ t ) + lim ⁡ Δ t → 0 −   f ( t + Δ t ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π t T + b n sin ⁡ n π t T ) \begin{aligned} & \frac{f\left( t+0 \right)+f\left( t-0 \right)}{2} \\ & =\frac{\underset{\Delta t\to { {0}^{+}}}{\mathop{\lim }}\,f\left( t+\Delta t \right)+\underset{\Delta t\to { {0}^{-}}}{\mathop{\lim }}\,f\left( t+\Delta t \right)}{2} \\ & =\frac{ { {a}_{0}}}{2}+\sum\limits_{n=1}^{\infty }{\left( { {a}_{n}}\cos \frac{n\pi t}{T}+{ {b}_{n}}\sin \frac{n\pi t}{T} \right)} \\ \end{aligned} 2f(t+0)+f(t0)=2Δt0+limf(t+Δt)+Δt0limf(t+Δt)=2a0+n=1(ancosTnπt+bnsinTnπt)
特别地, f ( t ) ∈ C 0 ( G )   ( G ⊆ [ − T , T ] ) f\left( t \right)\in { {C}^{0}}\left( G \right)\text{ }\left( G\subseteq \left[ -T,T \right] \right) f(t)C0(G) (G[T,T]),有
f ( t + 0 ) + f ( t − 0 ) 2 = f ( t ) + f ( t ) 2 = f ( t ) ,   ∀ t ∈ G ⊆ [ − T , T ] \frac{f\left( t+0 \right)+f\left( t-0 \right)}{2}=\frac{f\left( t \right)+f\left( t \right)}{2}=f\left( t \right),\text{ }\forall t\in G\subseteq \left[ -T,T \right] 2f(t+0)+f(t0)=2f(t)+f(t)=f(t), tG[T,T]
此时 f ( t ) f\left( t \right) f(t)的Fourier级数收敛到其本身,即有
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π t T + b n sin ⁡ n π t T ) ,   ∀ t ∈ G ⊆ [ − T , T ] f\left( t \right)=\frac{ { {a}_{0}}}{2}+\sum\limits_{n=1}^{\infty }{\left( { {a}_{n}}\cos \frac{n\pi t}{T}+{ {b}_{n}}\sin \frac{n\pi t}{T} \right)},\text{ }\forall t\in G\subseteq \left[ -T,T \right] f(t)=2a0+n=1(ancosTnπt+bnsinTnπt), tG[T,T]


  由上面的讨论,任取一个时间信号 f ( t ) f\left( t \right) f(t),确立或要求以下条件:

  1. f ( t ) f\left( t \right) f(t)不具有周期,则令其周期为 ∞ = 2 T ( T → ∞ ) \infty =2T\left( T\to \infty \right) =2T(T);若 f ( t ) f\left( t \right) f(t)具有周期 2 T 0 2{ {T}_{0}} 2T0,则 ∞ = 2 T ( T → ∞ ) \infty =2T\left( T\to \infty \right) =2T(T)也可视为 f ( t ) f\left( t \right) f(t)的一个周期。因此统一规定 f ( t ) f\left( t \right) f(t)的周期为
    ∞ = 2 T ( T → ∞ ) \infty =2T\left( T\to \infty \right) =2T(T)

  2. f ( t ) f\left( t \right) f(t)绝对可积,即
    ∫ − ∞ ∞ ∣ f ( t ) ∣ d t < ∞ \int_{-\infty }^{\infty }{\left| f\left( t \right) \right|dt}<\infty f(t)dt<
    这样 f ( t ) f\left( t \right) f(t) R \mathbb{R} R上也一定可积。

  3. f ( t ) f\left( t \right) f(t) R \mathbb{R}

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: Python可以使用NumPy库来实现二维傅里变换逆变换。 二维傅里变换可以使用numpy.fft.fft2()函数来实现,其语法为: numpy.fft.fft2(arr, s=None, axes=(-2, -1), norm=None) 其中,arr为输入的二维数组,s为可选参数,指定输出数组的大小,axes为可选参数,指定在哪些轴上进行傅里变换,norm为可选参数,指定归一化方式。 逆变换可以使用numpy.fft.ifft2()函数来实现,其语法为: numpy.fft.ifft2(arr, s=None, axes=(-2, -1), norm=None) 其中,arr为输入的二维数组,s为可选参数,指定输出数组的大小,axes为可选参数,指定在哪些轴上进行傅里逆变换,norm为可选参数,指定归一化方式。 需要注意的是,二维傅里变换逆变换的输入数组都应该是复数类型。 ### 回答2: 傅里变换是一种将一个函数(或信号)转换成频谱的方法,它的逆变换可以将频谱转换回函数。在计算机图像处理领域,二维傅里变换逆变换可以用来去除图像中的噪点、滤波和压缩图像等应用。 Python的NumPy和SciPy库提供了方便的接口来实现二维傅里变换逆变换。可采用以下步骤实现: 1. 导入相关库: ``` import numpy as np import cv2 from matplotlib import pyplot as plt ``` 2. 加载原始图像并转换为灰度图像: ``` img = cv2.imread('lena.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ``` 3. 傅里变换: ``` f = np.fft.fft2(gray) fshift = np.fft.fftshift(f) magnitude_spectrum = 20*np.log(np.abs(fshift)) ``` 其中,`np.fft.fft2`用来进行二维傅里变换,`np.fft.fftshift`用来将低频分量移动到频谱的中心。`20*np.log(np.abs(fshift))`用来计算幅度谱的值并进行对数变换。 4. 逆变换: ``` f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift) img_back = np.abs(img_back) ``` 逆变换过程与变换过程基本相同,只是将移动后的频谱进行逆移动即可。 5. 显示变换后的频谱图和逆变换后的图像: ``` plt.subplot(121),plt.imshow(magnitude_spectrum, cmap = 'gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(img_back, cmap = 'gray') plt.title('Image after HPF'), plt.xticks([]), plt.yticks([]) plt.show() ``` 以上步骤中,`plt.subplot(121)`和`plt.subplot(122)`用于分别显示频谱图和逆变换后的图像,`plt.imshow`用于显示图像,`plt.title`用于设置图像标题,`plt.xticks([])`和`plt.yticks([])`用于去除坐标轴的刻度。 以上就是使用Python实现二维傅里变换逆变换的步骤。这种方法已经成为图像处理中的重要工具之一,也为数字图像的处理提供了方便和灵活性。 ### 回答3: 傅里变换是信号处理中的重要工具,在频域中对信号进行分析,求出其由哪些频率成分组成。在某些情况下,需要对信号进行逆变换,将信号从频域转换为时域,得到原信号的时间域波形。 Python中可以通过调用SciPy库中的fftpack模块来实现二维傅里变换逆变换。具体步骤如下: 1. 导入所需模块 from scipy import fftpack 2. 加载待处理图像 img = plt.imread('test.png') # 加载图像文件 3. 对图像进行傅里变换 f_img = fftpack.fft2(img) # 二维fft变换 4. 对傅里变换的结果进行移动,使得低频分量位于图像中心,并进行取模运算得到幅值谱 f_img = fftpack.fftshift(f_img) # 移动,低频分量位于中心 spectrum = np.abs(f_img) # 取模 5. 对幅值谱进行对数变换,以便更好地展示频域中的强度变化 log_spectrum = np.log10(1+spectrum) # 取对数 6. 将幅值谱转换为灰度图像,以便显示 plt.imshow(log_spectrum, cmap='gray') # 显示 7. 对傅里变换的结果进行逆变换,得到原图像 if_img = fftpack.ifftshift(f_img) # 逆移动 img_back = fftpack.ifft2(if_img) # 逆变换 以上是Python实现二维傅里变换逆变换的基本步骤。在实际应用中,可能还需要进行滤波、阈值处理等操作,以便更好地分析信号。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值