一阶差分和二阶差分概念及其举例

一阶差分和二阶差分概念及其举例

1、一阶差分

1.1 概念

一阶差分是指对一个数列中的每个元素,计算其与其前一个元素之差的操作。

1.2 举例

举例来说,对于数列[1, 3, 6, 10, 15,33],它的一阶差分数列可以通过计算每个元素与其前一个元素之差得到。具体计算如下:

差分数列 = [3-1, 6-3, 10-6, 15-10, 33-15] = [2, 3, 4, 5,18]

因此,原数列[1, 3, 6, 10, 15, 33]的一阶差分数列为[2, 3, 4, 5,18]。

2、二阶差分

2.1 概念

二阶差分是指对一个数列进行两次差分操作得到的新数列。在数学中,差分操作是指将数列中的每个元素与它前面的元素之差计算出来,得到一个新的数列。

对于一个数列{ a 1 , a 2 , a 3 , . . . , a n a_1, a_2, a_3, ..., a_n a1,a2,a3,...,an},它的一阶差分可以表示为 { b 1 , b 2 , b 3 , . . . , b n − 1 b_1, b_2, b_3, ..., b_{n-1} b1,b2,b3,...,bn1},其中 b i = a i + 1 − a i b_i = a_{i+1} - a_i bi=ai+1ai。再对一阶差分数列进行一次差分操作,得到的就是二阶差分数列 { c 1 , c 2 , c 3 , . . . , c n − 2 c_1, c_2, c_3, ..., c_{n-2} c1,c2,c3,...,cn2},其中 c i = b i + 1 − b i c_i = b_{i+1} - b_i ci=bi+1bi

2.2 举例

假设我们有一个数列 {1, 4, 9, 16, 25,36,49,64},我们可以计算其一阶差分和二阶差分。

一阶差分:
b 1 = a 2 − a 1 = 4 − 1 = 3 b_1 = a_2 - a_1 = 4 - 1 = 3 b1=a2a1=41=3
b 2 = a 3 − a 2 = 9 − 4 = 5 b_2 = a_3 - a_2 = 9 - 4 = 5 b2=a3a2=94=5
b 3 = a 4 − a 3 = 16 − 9 = 7 b_3 = a_4 - a_3 = 16 - 9 = 7 b3=a4a3=169=7
b 4 = a 5 − a 4 = 25 − 16 = 9 b_4 = a_5 - a_4 = 25 - 16 = 9 b4=a5a4=2516=9
b 5 = a 6 − a 5 = 36 − 25 = 11 b_5 = a_6 - a_5 = 36 - 25= 11 b5=a6a5=3625=11
b 6 = a 7 − a 6 = 49 − 36 = 13 b_6 = a_7 - a_6 = 49 - 36 = 13 b6=a7a6=4936=13
b 7 = a 8 − a 7 = 64 − 49 = 15 b_7 = a_8 - a_7 = 64 - 49 = 15 b7=a8a7=6449=15
一阶差分数列为 {3, 5, 7, 9,11,13,15}。

二阶差分:
c 1 = b 2 − b 1 = 5 − 3 = 2 c_1 = b_2 - b_1 = 5 - 3 = 2 c1=b2b1=53=2
c 2 = b 3 − b 2 = 7 − 5 = 2 c_2 = b_3 - b_2 = 7 - 5 = 2 c2=b3b2=75=2
c 3 = b 4 − b 3 = 9 − 7 = 2 c_3 = b_4 - b_3 = 9 - 7 = 2 c3=b4b3=97=2
c 4 = b 5 − b 4 = 11 − 9 = 2 c_4= b_5 - b_4 = 11 - 9 = 2 c4=b5b4=119=2
c 5 = b 6 − b 5 = 13 − 11 = 2 c_5 = b_6 - b_5 = 13 - 11 = 2 c5=b6b5=1311=2
c 6 = b 7 − b 6 = 15 − 13 = 2 c_6 = b_7 - b_6 = 15 - 13 = 2 c6=b7b6=1513=2
二阶差分数列为 {2, 2, 2, 2, 2, 2}。

可以看到,通过两次差分操作,原始数列 {1, 4, 9, 16, 25,36,49,64} 变为二阶差分数列 {2, 2, 2, 2, 2, 2}。

二阶差分常常用于时间序列分析和平滑预测中,可以用来消除原始数列的趋势和季节性变化,从而更好地分析和预测数列的周期性变化。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
以下是一些使用差分进化抽样算法的 MATLAB 代码示例: 1. 使用差分进化抽样算法求解目标函数的最优值: ```matlab % 定义目标函数 fun = @(x) sum(x.^2); % 定义差分进化抽样算法的参数 nvars = 10; % 变量个数 lb = -10*ones(1,nvars); % 变量下界 ub = 10*ones(1,nvars); % 变量上界 options = optimoptions('differentialEvolution', 'PopulationSize', 50, 'MaxGenerations', 100); % 使用差分进化抽样算法求解最优解 [x, fval] = differentialEvolution(fun, lb, ub, options); % 输出结果 disp(['最优解:', num2str(x)]); disp(['最优值:', num2str(fval)]); ``` 2. 使用差分进化抽样算法求解约束优化问题: ```matlab % 定义目标函数和约束条件 fun = @(x) x(1)^2 + x(2)^2; nonlcon = @(x) [x(1)^2 + x(2)^2 - 1; x(1) + x(2) - 2]; % 定义差分进化抽样算法的参数 nvars = 2; % 变量个数 lb = -10*ones(1,nvars); % 变量下界 ub = 10*ones(1,nvars); % 变量上界 options = optimoptions('differentialEvolution', 'PopulationSize', 50, 'MaxGenerations', 100); % 使用差分进化抽样算法求解最优解 [x, fval] = differentialEvolution(fun, lb, ub, nonlcon, options); % 输出结果 disp(['最优解:', num2str(x)]); disp(['最优值:', num2str(fval)]); ``` 3. 使用差分进化抽样算法进行多目标优化: ```matlab % 定义目标函数和约束条件 fun1 = @(x) x(1)^2; fun2 = @(x) (x(1)-2)^2 + x(2)^2; nonlcon = @(x) x(1) + x(2) - 2; % 定义差分进化抽样算法的参数 nvars = 2; % 变量个数 lb = -10*ones(1,nvars); % 变量下界 ub = 10*ones(1,nvars); % 变量上界 options = optimoptions('differentialEvolution', 'PopulationSize', 50, 'MaxGenerations', 100); % 使用差分进化抽样算法求解 Pareto 前沿 [x, fval] = differentialEvolutionMulti(fun1, fun2, lb, ub, nonlcon, options); % 输出 Pareto 前沿 figure; plot(fval(:,1), fval(:,2), 'o'); xlabel('f1'); ylabel('f2'); title('Pareto 前沿'); ``` 以上是差分进化抽样算法在 MATLAB 中的一些应用示例。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值