神经网络多损失函数联合方式

多损失函数联合

loss_fn_1用于优化网络权重,loss_fn_2用于优化中心矢量

optim_1 = torch.optim.AdamW(weights.parameters(), lr=lr, weight_decay=1e-4)
optim_2 = torch.optim.RMSprop(weights.parameters(), lr=5e-3)
loss_fn_1 = nn.CrossEntropyLoss().to(device)
loss_fn_2 = CenterLoss(6, 6, size_average=True).to(device)
loss_rate = 5e-3
epochs = 15
index_train = 1
index_test = 1
acc = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值