使用卷积神经网络对图像处理

transforms.Grayscale()是用于图片处理时简化通道数与特征。

transforms.Normalize(mean=[0.61427461], std=[0.24995622])这一步的作用对图像数据进行归一化处理。归一化通常将图像的像素值从原始范围(通常是 [0, 255])转换到一个标准化的范围(通常是 [-1, 1] 或 [0, 1]),同时根据给定的均值 (mean) 和标准差 (std) 进行标准化。

具体来说,transforms.Normalize(mean=[0.61427461], std=[0.24995622]) 做了以下操作:

  1. 去均值化:从每个像素值中减去 mean 指定的值(在这里是一个单通道均值,通常用于灰度图像)。如果图像是彩色的(有多个通道),那么 mean 应该是一个与通道数相同的列表。在这里,给定的均值是 0.61427461,这很可能是一个经过计算得出的单通道图像的均值。

  2. 标准化:将去均值化后的像素值除以 std 指定的标准差(在这里也是一个单通道标准差)。与 mean 类似,如果图像是彩色的,std 也应该是一个与通道数相同的列表。在这里,标准差是 0.24995622

通过归一化和标准化,图像数据被转换成一个更“标准”的分布,这有助于模型更好地学习和泛化。在神经网络中,标准化后的数据通常能更快地收敛,并且可能达到更高的精度。

这些参数(均值和标准差)通常是通过计算整个训练数据集的统计量来得到的。使用训练集上计算出的均值和标准差来归一化验证集和测试集的数据,以确保数据分布的一致性。注意,这里的均值和标准差是针对特定数据集的,不同的数据集会有不同的值。

在对于二分类任务中

在PyTorch中,nn.Conv2d表示二维卷积层,通常用于处理图像数据。对于nn.Conv2d的卷积计算,输出特征图的尺寸(高度和宽度)可以通过以下公式计算:

Output Height=⌊StrideInput Height+2×Padding−Kernel Size​⌋+1

Output Width=⌊StrideInput Width+2×Padding−Kernel Size​⌋+1

其中:

  • Input Height 和 Input Width 分别是输入特征图的高度和宽度。
  • Padding 是卷积操作前在输入特征图边界上填充的像素数。
  • Kernel Size 是卷积核的大小(例如,3x3)。
  • Stride 是卷积核在输入特征图上滑动的步长。
  • ⌊⋅⌋ 表示向下取整。

请注意,这个公式计算的是卷积操作后输出特征图的空间尺寸。输出特征图的通道数(即输出特征图的深度)由nn.Conv2dout_channels参数决定。

此外,nn.Conv2d还有其他一些参数,如dilation(控制卷积核点之间的间距,也被称为"à trous"算法)和groups(控制输入通道和输出通道之间的连接模式)。这些参数可能会进一步影响卷积操作的计算方式和输出特征图的形状,但在基本情况下,上述公式足以计算输出特征图的空间尺寸。

在实际应用中,你可以使用PyTorch的nn.Conv2d类来定义卷积层,并通过前向传播来计算输出特征图。如果你需要更复杂的卷积操作,比如转置卷积(反卷积),你可能需要使用nn.ConvTranspose2d类。

池化层输出计算公式:

O_H = (I_H - K_H) / S + 1
O_W = (I_W - K_W) / S + 1

nn.BatchNorm2d(64) 中的参数 64 表示这个批量归一化层有 64 个输入特征通道。换句话说,这个层预期接收的输入数据应该具有 64 个通道。

批量归一化层的工作原理大致如下:

  1. 标准化:对每个批次的每个特征通道,该层计算其均值和标准差,并将特征通道的数据标准化为具有零均值和单位方差。

  2. 缩放和偏移:标准化后的数据会经过两个可学习的参数(缩放因子 gamma 和偏移量 beta)进行缩放和偏移,以恢复数据的原始分布(如果需要的话)。这两个参数在训练过程中会被更新。

  3. 增加非线性:批量归一化层通常还会在缩放和偏移之后应用一个非线性激活函数(尽管这不是 nn.BatchNorm2d 的直接部分,但通常是这样使用的)。

使用批量归一化可以带来几个好处:

  • 减少内部协变量偏移:批量归一化可以减少由于网络层参数的变化导致的内部节点数据分布的变化,从而有助于训练更稳定的模型。
  • 允许更高的学习率:由于批量归一化有助于稳定训练过程,因此可以使用更高的学习率来加速训练。
  • 作为正则化手段:批量归一化具有一定的正则化效果,有助于减少过拟合。

需要注意的是,nn.BatchNorm2d 只在训练时计算每个批次的均值和标准差;在评估或测试时,它通常使用在训练期间运行的所有批次的统计数据的运行平均值(或固定值)进行归一化。这是通过在训练期间启用或禁用批量归一化层的 .train() 和 .eval() 方法来控制的。

nn.Softmax(1)和nn.Sigmoid()的区别:

nn.Softmax(1) 和 nn.Sigmoid() 是 PyTorch 中两种常用于将神经网络的输出转换为概率分布的函数,但它们之间有一些重要的区别。

nn.Softmax(1)

nn.Softmax 函数用于将神经网络的原始输出转换为概率分布。它将输入张量中的每个元素转换为一个介于 0 和 1 之间的值,并且整个张量(在指定的维度上)的元素之和为 1。

这里的参数 1 表示 softmax 操作应该在哪个维度上进行。例如,如果你有一个形状为 [batch_size, num_classes] 的张量,并且你想对每个样本的类别分数进行 softmax 操作,那么你应该使用 nn.Softmax(dim=1)

softmax 函数的数学表达式为:

[ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} ]

其中,( x_i ) 是输入张量中的第 ( i ) 个元素,而分母是对所有元素的指数和进行归一化。

nn.Sigmoid()

nn.Sigmoid 函数则用于将神经网络的输出压缩到 0 和 1 之间。它通常用于二元分类问题或需要输出概率的场景,其中概率值并不一定要加起来为 1。

sigmoid 函数的数学表达式为:

[ \text{sigmoid}(x) = \frac{1}{1 + e^{-x}} ]

sigmoid 函数将任何实数映射到 0 和 1 之间,但不同于 softmax,它并不保证输出值的和为 1。

区别

  1. 输出范围:两者都将输出限制在 0 和 1 之间,但 softmax 保证在所有输出上的和为 1,而 sigmoid 则不保证。

  2. 应用场景:softmax 通常用于多分类问题,其中输出代表不同类别的概率分布;而 sigmoid 则常用于二元分类问题或需要单个概率值的情况。

  3. 归一化方式:softmax 是通过指数函数和归一化来实现的,而 sigmoid 是通过简单的数学变换实现的。

  4. 处理维度:softmax 可以指定在哪个维度上进行操作(通过 dim 参数),这对于处理批处理数据非常有用;而 sigmoid 则直接对整个张量进行操作,不考虑维度。

  5. 梯度消失问题:当使用 sigmoid 作为激活函数时,由于其在饱和区的梯度很小,可能会导致梯度消失问题。而 softmax 通常用于输出层,不太涉及梯度消失的问题。

在选择使用 nn.Softmax 还是 nn.Sigmoid 时,你需要根据具体的应用场景和需求来决定。

二元交叉熵BCELoss 需要使用Sigmoid(),BCEWithLogitsLoss内置Sigmoid函数。

Adam和SGD的区别:

Adam和SGD是两种常用的优化算法,用于在训练神经网络时更新模型的参数以最小化损失函数。它们之间的主要区别体现在以下几个方面:

  1. 基本原理

    • SGD(随机梯度下降):其基本原理是通过不断调整模型参数来最小化损失函数。每次迭代时,SGD从训练数据中随机选择一个小批量(mini-batch)的样本来计算梯度,并使用梯度的相反方向更新模型参数。
    • Adam(自适应矩估计):结合了梯度的一阶矩估计和二阶矩估计来动态调整每个参数的学习率。它使用动量(Momentum)来加速参数更新,并在不同参数上自适应地调整学习率。
  2. 学习率调整

    • SGD:通常使用固定的学习率,这意味着在整个训练过程中,参数更新的步长是恒定的。
    • Adam:采用自适应学习率策略,学习率会随着训练的进行而自动调整。这有助于在训练的不同阶段更智能地更新权重。
  3. 计算复杂性

    • SGD:由于其简单的更新机制,通常计算资源需求较低。
    • Adam:由于需要存储并更新梯度的第一阶和第二阶矩估计值,Adam通常比SGD需要更多的计算资源。
  4. 收敛速度

    • 在实践中,Adam通常比SGD更快地收敛,因为它能够更智能地更新权重。
  5. 鲁棒性和稳定性

    • SGD:在某些情况下可能不太稳定,尤其是在学习率设置不当或数据噪声较大的情况下。
    • Adam:在某些情况下可能表现得更好,尤其是在处理非平稳性或非线性问题时。
  6. 超参数敏感性

    • SGD:超参数较少,主要需要调整学习率和批量大小。
    • Adam:需要调整的超参数相对较多,如β1、β2和ε等。
  7. 应用广泛性

    • SGD:适用于各种优化问题,不仅仅局限于深度学习。
    • Adam:在深度学习中非常流行,但由于其自适应学习率的特性,也适用于其他机器学习任务。

总的来说,选择Adam还是SGD取决于具体任务的需求,包括计算资源、收敛速度、鲁棒性以及对超参数调整的容忍度。在实践中,通常建议首先尝试使用Adam,因为它在许多情况下都能表现出良好的性能。然而,如果计算资源有限或对超参数的调整不太敏感,SGD可能是一个更合适的选择。

  • 38
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值