tf.keras.layers.Embedding详解

本文详细介绍了tf.keras.layers.Embedding层的作用和参数,该层主要用于将文本中的词转换为稠密向量,以便在自然语言处理任务中捕捉词之间的关系。通过设置input_dim、output_dim等参数,可以定制词嵌入的维度和初始化方法。示例展示了如何在实际应用中使用该层。
摘要由CSDN通过智能技术生成

目录

tf.keras.layers.Embedding的作用

tf.keras.layers.Embedding的示例


tf.keras.layers.Embedding的作用

tf.keras.layers.Embedding可以将正整数转换成稠密的向量表达。常用于自然语言处理,比如把文本中的词转换成一个个向量。将词转换成向量,可以更好地表达词之间的一些隐含关系。想一下,就是表达一张图片,其中的像素值之间也存在一些内在关系,比如像素值越大,在图片上越亮。

tf.keras.layers.Embedding的参数如下

input_dim,
output_dim,
embeddings_initializer='uniform',
embeddings_regularizer=None,
activity_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
input_length=None,

 input_dim代表词汇总量,比如处理一个文本类任务时,数据中有10000个不同的词汇,那么input_dim就是10000

output_dim代表单个词转换成的向量长度,比如output_dim设置成16,那么就会用16个数字表示一个词

em

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

️Carrie️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值