目录
tf.keras.layers.Embedding的作用
tf.keras.layers.Embedding可以将正整数转换成稠密的向量表达。常用于自然语言处理,比如把文本中的词转换成一个个向量。将词转换成向量,可以更好地表达词之间的一些隐含关系。想一下,就是表达一张图片,其中的像素值之间也存在一些内在关系,比如像素值越大,在图片上越亮。
tf.keras.layers.Embedding的参数如下
input_dim,
output_dim,
embeddings_initializer='uniform',
embeddings_regularizer=None,
activity_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
input_length=None,
input_dim代表词汇总量,比如处理一个文本类任务时,数据中有10000个不同的词汇,那么input_dim就是10000
output_dim代表单个词转换成的向量长度,比如output_dim设置成16,那么就会用16个数字表示一个词
em