ResNeSt: Split-Attention Networks

ResNeSt是一种新型ResNet变体,通过Split-Attention block实现跨feature map group的注意力,改进了ResNet在下游任务中的性能。在ImageNet上,ResNeSt-50的准确性超过ResNet,同时提升目标检测和语义分割任务的效果。
摘要由CSDN通过智能技术生成

论文链接: https://hangzhang.org/files/resnest.pdf

Code:代码

 

摘要

    尽管图像分类模型最近一直在继续发展,但是由于其简单且模块化的结构,大多数下游应用(例如目标检测和语义分段)仍将ResNet变体用作backbone。 我们提出了一个模块化的Split-Attention block,该block可实现跨feature map groups的attention。 通过以ResNet样式堆叠这些Split-Attention块,我们获得了一个称为ResNeSt的新ResNet变体。 我们的网络保留了完整的ResNet结构,可直接用于下游任务,而不会引起额外的计算成本。

 

ResNeSt模型的模型复杂度优于其他网络。 例如,ResNeSt-50使用224×224的单个crop-size在ImageNet上实现了81.13%的top-1 accuracy,比以前的最佳ResNet变种高出1%以上。 此改进还有助于下游任务,包括目标检测,实例分割和语义分割。 例如,通过简单地用ResNeSt-50替换ResNet-50backbone,我们将MS-COCO上的Faster RCNN的mAP从39.3%提高到42.3%,并将ADE20K上

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: resnest: split-attention networks是一种基于注意力机制的神经网络模型,它可以在处理多个输入时分别关注每个输入的不同部分,从而提高模型的准确性和效率。该模型可以应用于图像分类、目标检测等任务中。 ### 回答2: ResNeSt是一种用于图像分类的卷积神经网络模型,它采用了一种称为Split-Attention的注意力分离机制。 Split-Attention网络是一种通过分离学习空间信息和通道信息来提高分类性能的方法。在ResNeSt中,它被应用于每个基本构建块的设计中。 在传统的ResNet网络中,卷积层的输入是通过单一的注意力机制处理的,该机制将学习空间信息和通道信息作为一个整体进行处理。然而,这种处理方式可能导致空间和通道信息之间的冲突和干扰。 为了解决这个问题,ResNeSt引入了Split-Attention机制。该机制通过将输入特征分成多个部分,并分别对这些部分进行处理,以增强网络对空间和通道信息的理解和表示能力。 具体来说,Split-Attention网络首先将输入特征分成多个部分,每个部分都包含一定数量的通道。对于每个部分,它使用一个1x1卷积层来学习通道信息,以提取每个通道的重要性。然后,它使用一个全局平均池化层来学习空间信息,以捕捉特征图中不同区域的重要性。最后,它利用通道和空间信息之间的关系来生成最终的特征表示。 通过这种注意力分离机制,Split-Attention网络能够更好地提取和组合空间和通道信息,从而提高了图像分类任务的性能。在实验中,ResNeSt在一系列的图像分类数据集上都表现出了优秀的性能,证明了Split-Attention网络的有效性。 ### 回答3: resnest是一种新型的深度神经网络结构,它主要关注解决多任务学习中的注意力分割问题。在传统的深度神经网络中,通常将注意力放在一个任务上,而将其他任务的信息忽略掉。这种方式可能导致模型在多任务学习中的性能下降。resnest通过引入split-attention机制来解决这个问题。 split-attention网络通过将注意力分割并分配给每个任务,实现同时关注多个任务的效果。具体来说,它使用了两个关键组件:group convolution和cross-feature aggregation。 首先,group convolution是指将输入的特征图分成多个组并进行卷积操作。每一个组的特征图代表一个任务的信息。通过这种方式,不同任务的特征图可以在不同的组中进行交互,提高了每个任务的表示能力。 其次,cross-feature aggregation是指对不同任务的特征图进行聚合。它利用每个任务的特征图来生成一个注意力图,然后使用这个注意力图来调整其他任务的特征图表示,以强化它们之间的关联性。 通过这两个组件的协同作用,resnest可以同时考虑多个任务的信息,从而提高多任务学习的性能。与传统的单一注意力机制相比,resnest显著改善了多任务学习的能力,同时也能减少网络参数和计算代价。 总结起来,resnest: split-attention networks通过引入split-attention机制来解决多任务学习中的注意力分割问题,通过group convolution和cross-feature aggregation实现了对多个任务信息的同时关注。这种网络结构在多任务学习中具有潜力,并具有较高的性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值