resnest中split-attention代码实现步骤解析

split-attention

先看看原论文的模型图,这里不讲论文的模型图,讲实际代码实现流程。
请添加图片描述


请添加图片描述

当我看完代码后发觉,代码实现步骤跟论文原图中的步骤是有差别的,当然内部实际计算是一样的。

下面我会以举例的形式呈现代码实现split-attention模块的计算步骤。

1.下面的步骤得到了splited元组,可以看到分组是radix组为大组,groups反倒是小组,这是为了方便代码操作才这样分。

请添加图片描述
2.下面的步骤由splited元组经过一系列分组卷积与池化得到初步的atten

请添加图片描述
3.下面的步骤就是r-softmax的步骤,reshape确实将1*1*C的数据变成cardinal *radix * -1的数据

请添加图片描述
4.最后将splited与atten进行点乘相加,得到的out与input是相同的维度大小。
请添加图片描述
下面是split-attention代码

"""Split-Attention"""

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU
from torch.nn.modules.utils import _pair

__all__ = ['SplAtConv2d']

class SplAtConv2d(Module):
    """Split-Attention Conv2d
    基数cardinality =groups= 1 groups对应nn.conv2d的一个参数,即特征层内的cardinal组数
    基数radix = 2  用于SplAtConv2d block中的特征通道数的放大倍数,即cardinal组内split组数
    reduction_factor =4 缩放系数用于fc2和fc3之间减少参数量
    """
    def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0),
                 dilation=(1, 1), groups=1, bias=True,
                 radix=2, reduction_factor=4,
                 rectify=False, rectify_avg=False, norm_layer=None,
                 dropblock_prob=0.0, **kwargs):
        super(SplAtConv2d, self).__init__()
        # padding=1 => (1, 1)
        padding = _pair(padding)
        self.rectify = rectify and (padding[0] > 0 or padding[1] > 0)
        self.rectify_avg = rectify_avg
        # reduction_factor主要用于减少三组卷积的通道数,进而减少网络的参数量
        # inter_channels 对应fc1层的输出通道数 (64*2//4, 32)=>32
        inter_channels = max(in_channels*radix//reduction_factor, 32)
        self.radix = radix
        self.cardinality = groups
        self.channels = channels
        self.dropblock_prob = dropblock_prob
        # 注意这里使用了深度可分离卷积 groups !=1,实现对不同radix组的特征层进行分离的卷积操作
        if self.rectify:
            from rfconv import RFConv2d
            self.conv = RFConv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
                                 groups=groups*radix, bias=bias, average_mode=rectify_avg, **kwargs)
        else:
            self.conv = Conv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
                               groups=groups*radix, bias=bias, **kwargs)
        self.use_bn = norm_layer is not None
        if self.use_bn:
            self.bn0 = norm_layer(channels*radix)
        self.relu = ReLU(inplace=True)
        self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality)
        if self.use_bn:
            self.bn1 = norm_layer(inter_channels)
        self.fc2 = Conv2d(inter_channels, channels*radix, 1, groups=self.cardinality)
        if dropblock_prob > 0.0:
            self.dropblock = DropBlock2D(dropblock_prob, 3)
        self.rsoftmax = rSoftMax(radix, groups)

    def forward(self, x):
        # [1,64,h,w] = [1,128,h,w]
        x = self.conv(x)
        if self.use_bn:
            x = self.bn0(x)
        if self.dropblock_prob > 0.0:
            x = self.dropblock(x)
        x = self.relu(x)

        # rchannel通道数量
        batch, rchannel = x.shape[:2]
        if self.radix > 1:
            # [1, 128, h, w] = [[1,64,h,w], [1,64,h,w]]
            if torch.__version__ < '1.5':
                splited = torch.split(x, int(rchannel//self.radix), dim=1)
            else:
                splited = torch.split(x, rchannel//self.radix, dim=1)
             # [[1,64,h,w], [1,64,h,w]] => [1,64,h,w]
            gap = sum(splited)
        else:
            gap = x
        # [1,64,h,w] => [1, 64, 1, 1]
        gap = F.adaptive_avg_pool2d(gap, 1)
        # [1, 64, 1, 1] => [1, 32, 1, 1]
        gap = self.fc1(gap)

        if self.use_bn:
            gap = self.bn1(gap)
        gap = self.relu(gap)
        # [1, 32, 1, 1] => [1, 128, 1, 1]
        atten = self.fc2(gap)
        atten = self.rsoftmax(atten).view(batch, -1, 1, 1)

        # attens [[1,64,1,1], [1,64,1,1]]
        if self.radix > 1:
            if torch.__version__ < '1.5':
                attens = torch.split(atten, int(rchannel//self.radix), dim=1)
            else:
                attens = torch.split(atten, rchannel//self.radix, dim=1)
            # [1,64,1,1]*[1,64,h,w] => [1,64,h,w]
            out = sum([att*split for (att, split) in zip(attens, splited)])
        else:
            out = atten * x
        # contiguous()这个函数,把tensor变成在内存中连续分布的形式
        return out.contiguous()

class rSoftMax(nn.Module):
    def __init__(self, radix, cardinality):
        super().__init__()
        self.radix = radix
        self.cardinality = cardinality

    def forward(self, x):
        batch = x.size(0)
        if self.radix > 1:
            # [1, 128, 1, 1] => [1, 2, 1, 64]
            # 分组进行softmax操作
            x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
            # 对radix维度进行softmax操作
            x = F.softmax(x, dim=1)
            # [1, 2, 1, 64] => [1, 128]
            x = x.reshape(batch, -1)
        else:
            x = torch.sigmoid(x)
        return x
代码原文链接:https://blog.csdn.net/Forrest97/article/details/109009203

总结

代码操作确实挺复杂的,也不是太懂为啥就这么做,其中split-attention中其实有两次radix分组,看我上面的步骤就能看到,并且只有groups(cardinal)组之间是没有进行交互的,radix组之间是存在交互且进行softmax的。最后我只想问(认真),这样子将通道搞来搞去真的有啥深意吗?说是模型比resnet及其多种变种都有更好的效果,但我怎么觉得很大的功劳是resnest训练时用的那些个提高准确度与泛化能力的tricks,这些tricks倒是可以学学。如果有明白模型深意的可以讨论讨论。

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值