相关说明
- 数据集分成两个文件,
train
和test
。训练时,将train
分为训练集和验证集,用于训练模型以及判断模型训练的好坏。 test
数据集用于最终测试模型的通用性,即所训练出来的模型是否“过拟合”。
1.下载数据集
tr_path = 'covid.train.csv' # 设置训练集数据存储的地址
tt_path = 'covid.test.csv' # 设置测试集数据存储的地址
# !gdown为Google Colab所支持的特殊指令,用于下载存储在云盘中数据
!gdown --id '19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF' --output covid.train.csv
!gdown --id '1CE240jLm2npU-tdz81-oVKEF3T2yfT1O' --output covid.test.csv
下载数据不方便的同学,用下面的链接下载即可。
链接:https://pan.baidu.com/s/1iBWYkSy-Jj8UwHYnSSS73w
提取码:amva
2.导入相关的包
# 导入后续需要使用到的相关包
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# 导入对数据集进行相关处理的包
import numpy as np
import csv
import os
# 导入绘制图像相关的包
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
# 设置一个随机种子,以保证程序的可重复性
# 相关知识:使用相同的随机数种子,能够保证每次实验所生成的随机数相同
myseed = 42069
torch.backends.cudnn.deterministic = True # 设置为True,保证每次训练使用的卷积算法一致
# 算法一致:算法运行在相同的软硬件的前提下,如果具有相同的输入,则输出相同
# Note:确定性算法往往比不确定性算法有更坏的性能表现
torch.backends.cudnn.benchmark = False # 布尔值,为真将使cuDNN对多个卷积算法进行基准测试,并选择最快的算法。
# cuDNN 是英伟达专门为深度神经网络所开发出来的 GPU 加速库,针对卷积、池化等等常见操作做了非常多的底层优化
# 如果卷积网络结构不是动态变化的,网络的输入 (batch size,图像的大小,输入的通道) 是固定的,设置为True。由于本文并未涉及卷积运算,所以设置为False
# 设置numpy、torch、torch.cuda的随机数种子
np.random.seed(myseed)
torch.manual_seed(myseed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(myseed)
3.定义基本函数
def get_device():
''' 判断GPU是否可用,可用则返回cuda,否则返回cpu'''
return 'cuda' if torch.cuda.is_available() else 'cpu'
def plot_learning_curve(loss_record, title=''):
''' 训练结束后,用于绘制整个训练过程中Loss值的变化 '''
total_steps = len(loss_record['train'])
#
x_1 = range(total_steps)
x_2 = x_1[::len(loss_record['train']) // len(loss_record['dev'])]
figure(figsize=(6, 4)) # 设置图表的宽、高(以英尺为单位)
plt.plot(x_1, loss_record['train'], c='tab:red', label='train')
plt.plot(x_2, loss_record['dev'], c='tab:cyan', label='dev')
plt.ylim(0.0, 5.) # 限制y轴大小为0~5
plt.xlabel('Training steps')
plt.ylabel('MSE loss')
plt.title('Learning curve of {}'.format(title))
plt.legend() # 使修改的label生效
plt.show()
def plot_pred(dv_set, model, device, lim=35., preds=None, targets=None):
''' 绘制训练后的DNN网络的预测结果 '''
if preds is None or targets is None:
model.eval() # 设置模型围为测试模式
preds, targets = [], []
for x, y in dv_set:
x, y = x.to(device), y.to(device)
with torch.no_grad(): # 关闭梯度计算,降低内存消耗,加快运行速度
pred = model(x)
preds.append(pred.detach().cpu()) # detach()运算:用于将Tensor从计算图中分离出来 cpu()运算:将Tensor数据传回CPU
targets.append(y.detach().cpu())
preds = torch.cat(preds, dim=0).numpy() # torch.cat():在给定维中(dim指定)连接给定序列的seq张量。所有张量必须具有相同的形状(连接维度中除外)或为空。
targets = torch.cat(targets, dim=0).numpy()
figure(figsize=(5, 5))
# plt.scatter()用于绘制散点图
plt.scatter(targets, preds, c='r', alpha=0.5)
plt.plot([-0.2, lim], [-0.2, lim], c='b')
plt.xlim(-0.2, lim)
plt.ylim(-0.2, lim)
plt.xlabel('ground truth value')
plt.ylabel('predicted value')
plt.title('Ground Truth v.s. Prediction')
plt.show()
4.定义数据处理类
自定义数据集类必须实现三个函数:
__init__()
、__len__()
和__getitem__()
。本文在类COVID19Dataset
有所体现。
__init__()
:本函数仅在实例化类时被调用一次。用于完成一些初始化的操作,如读取数据集的数据、分割数据集等。__len__()
:调用该函数返回当前数据集中数据个数。__getitem__(idx)
:返回当前数据集中对应idx的数据。对于训练集,返回样本和对应的标签;对于测试集,通常仅返回样本。
class COVID19Dataset(Dataset):
''' 用于加载和预处理COVID19 数据集的类'''
def __init__(self,path,mode='train',target_only=False):
self.mode = mode
# 读取数据,保存格式为numpy数组
with open(path, 'r') as fp:
data = list(csv.reader(fp))
data = np.array(data[1:])[:, 1:].astype(float)
# target_only为默认值,则选取所有93个特征作为训练数据;
if not target_only:
feats = list(range(93))
else:
pass
if mode == 'test':
# 由于测试集不含有标签数据,故仅对data进行操作即可
data = data[:, feats]
self.data = torch.FloatTensor(data)
else:
# 针对训练集的操作
# 读取的原始数据: 2700 x 94 (40 states + day 1 (18) + day 2 (18) + day 3 (18))
# 处理后,data为2700 x 93,target为2700 x 1
target = data[:, -1]
data = data[:, feats]
# 将训练集划分为训练集和验证集,此处按照:训练集:验证集=9:1 的比例进行
if mode == 'train':
indices = [i for i in range(len(data)) if i % 10 != 0]
elif mode == 'dev':
indices = [i for i in range(len(data)) if i % 10 == 0]
# 将numpy array格式的数据均转化为torch.FloatTensor类型
self.data = torch.FloatTensor(data[indices])
self.target = torch.FloatTensor(target[indices])
# 归一化特征;这种做法通常有利于提升模型训练的效果
self.data[:, 40:] = \
(self.data[:, 40:] - self.data[:, 40:].mean(dim=0, keepdim=True)) \
/ self.data[:, 40:].std(dim=0, keepdim=True)
self.dim = self.data.shape[1]
print('Finished reading the {} set of COVID19 Dataset ({} samples found, each dim = {})'
.format(mode, len(self.data), self.dim))
def __getitem__(self, index):
# 根据传入的index值返回数据
if self.mode in ['train', 'dev']:
return self.data[index], self.target[index]
else:
return self.data[index]
def __len__(self):
# 返回数据集的长度(尺寸)
return len(self.data)
5.定义数据加载器"DataLoader"
数据加载器的意义:前一步构造的数据集实现了每一次返回一个样本和对应的标签,但在训练模型时,我们希望一次给模型“喂”进去一批样本
minibatches”
,同时在每个epoch
按照不同的次序导入数据shuffle
。上述做法能够起到降低模型过拟合,以及利用Python的批处理能力加速训练的目的。
DataLoader
可作为迭代器使用。每次迭代返回由batch_size
控制的数据规模。
def prep_dataloader(path, mode, batch_size, n_jobs=0, target_only=False):
'''构造一个数据集,再将数据集传入数据加载器'''
dataset = COVID19Dataset(path, mode=mode, target_only=target_only)
# num_workers(可选):用于数据加载的子进程数。0表示将在主进程中加载数据。(默认值:0)
# pin_memory(可选) :如果为True,数据加载程序将在返回张量之前将张量复制到CUDA固定内存中。
# drop_last(可选) :如果数据集大小不能被批大小(batch_size)整除,则设置为True以删除最后一个不完整的批。如果为False,并且数据集的大小不能被批大小整除,则最后一批将更小。(默认值:False)
dataloader = DataLoader(
dataset, batch_size,
shuffle=(mode == 'train'), drop_last=False,
num_workers=n_jobs, pin_memory=True) # 构造数据加载器
return dataloader
6.定义深度神经网络“DNN”
class NeuralNet(nn.Module):
''' 一个简单的深度神经网络(均由全连接层构成)'''
# torch.nn名称空间提供了构建自己的神经网络所需的所有构建块。
# PyTorch中的有关神经网络每个模块都是nn.module的子类。
# 神经网络本身就是一个由其他模块(层)组成的模块。
# 这种嵌套结构允许轻松构建和管理复杂的体系结构。
def __init__(self, input_dim):
# 每个继承nn.Module的子类都需要在forward()方法中实现对于输入数据的操作。
super(NeuralNet, self).__init__()
# Sequential是模块的有序容器。
# 数据以定义的相同顺序通过所有模块。您可以使用顺序容器快速的组合一个网络。
self.net = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
# 定义损失函数
# reduction(可选):指定要应用于输出的缩减:"none"|"mean"|"sum"
# "none":不应用缩减
# "mean":输出的总和将除以输出中的元素数
# "sum" : 将对输出进行求和。(默认值)
self.criterion = nn.MSELoss(reduction='mean')
def forward(self, x):
''' 定义前向传递函数'''
# .squeeze() 返回一个删除输入张量中维度大小为1的张量
return self.net(x).squeeze(1)
def cal_loss(self, pred, target):
''' 定义损失计算函数 '''
return self.criterion(pred, target)
7.定义训练函数
def train(tr_set, dv_set, model, config, device):
'''训练 DNN '''
n_epochs = config['n_epochs'] # 设置最大的训练轮次
# 设置优化器
optimizer = getattr(torch.optim, config['optimizer'])(
model.parameters(), **config['optim_hparas'])
min_mse = 1000.
loss_record = {'train': [], 'dev': []} # 记录训练过程中的损失值
early_stop_cnt = 0
epoch = 0
while epoch < n_epochs:
model.train() # 将模型设置为训练模式
for x, y in tr_set: # 开始迭代数据加载器
optimizer.zero_grad() # 设置梯度值为0
x, y = x.to(device), y.to(device) # 将数据转移到device中,加速运算
pred = model(x) # 前向传播
mse_loss = model.cal_loss(pred, y) # 计算损失
mse_loss.backward() # 启动反向传播,计算梯度
optimizer.step() # 利用计算出来的梯度,更新参数
loss_record['train'].append(mse_loss.detach().cpu().item())
# 在完成一个epoch的训练后,在验证集上测试模型的效果
dev_mse = dev(dv_set, model, device)
if dev_mse < min_mse:
# 若在验证集上得到更好的效果,则及时保存模型的参数
min_mse = dev_mse
print('Saving model (epoch = {:4d}, loss = {:.4f})'
.format(epoch + 1, min_mse))
torch.save(model.state_dict(), config['save_path'])
early_stop_cnt = 0
else:
early_stop_cnt += 1 # 统计模型效果连续不变好的次数
epoch += 1
loss_record['dev'].append(dev_mse)
if early_stop_cnt > config['early_stop']:
# 如果模型连续不变好的次数大于预设值,则停止训练
# 这往往代表模型已经不能够训练得到更好的结果,及时停止训练是一个较好的策略
break
print('Finished training after {} epochs'.format(epoch))
return min_mse, loss_record
8.定义验证函数
def dev(dv_set, model, device):
model.eval() # 设置模型为测试模式
total_loss = 0
for x, y in dv_set:
x, y = x.to(device), y.to(device)
with torch.no_grad(): # 取消梯度计算(加快运行速度)
pred = model(x) # 前向计算
mse_loss = model.cal_loss(pred, y) # 计算损失
total_loss += mse_loss.detach().cpu().item() * len(x) # 累加损失值
total_loss = total_loss / len(dv_set.dataset) # 计算平均的损失值
return total_loss
9.定义测试函数
def test(tt_set, model, device):
model.eval()
preds = []
for x in tt_set:
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu()) # 记录每一批数据的预测值
preds = torch.cat(preds, dim=0).numpy() # 融合每一批数据的预测值,并将其转化为numpy数据
return preds
10.配置超参数“hyperparameters”
device = get_device() # 检验当前的硬件环境(CPU/GPU)
os.makedirs('models', exist_ok=True) # 创建存储模型的文件夹
target_only = False # 使用默认的特征(在本文中,即使用全部93个特征)
config = {
'n_epochs': 3000, # 设置最大的训练批次
'batch_size': 270, # 设置数据加载器的batch_size,即每次迭代返回的数据数量
'optimizer': 'SGD', # 优化算法(optimizer in torch.optim)
'optim_hparas': { # 优化器的超参数设置 (具体取决于你所调用的优化器)
'lr': 0.001, # SGD算法的学习率
'momentum': 0.9 # SGD算法的momentum
},
'early_stop': 200, # 提前结束批次(距离你模型性能上一次提升的批次数)
'save_path': 'models/model.pth' # 模型保存路径
}
11.创建数据加载器
tr_set = prep_dataloader(tr_path, 'train', config['batch_size'], target_only=target_only)
dv_set = prep_dataloader(tr_path, 'dev', config['batch_size'], target_only=target_only)
tt_set = prep_dataloader(tt_path, 'test', config['batch_size'], target_only=target_only)
12.创建DNN
model = NeuralNet(tr_set.dataset.dim).to(device) # 构造DNN,并导入GPU
13.调用训练函数,开始训练
model_loss, model_loss_record = train(tr_set, dv_set, model, config, device)
14.绘制学习图
plot_learning_curve(model_loss_record, title='deep model')
15.保存模型、验证模型
del model
model = NeuralNet(tr_set.dataset.dim).to(device)
ckpt = torch.load(config['save_path'], map_location='cpu') # 载入先前保存的模型参数
model.load_state_dict(ckpt)
plot_pred(dv_set, model, device)
16.保存结果
def save_pred(preds, file):
''' Save predictions to specified file '''
print('Saving results to {}'.format(file))
with open(file, 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['id', 'tested_positive'])
for i, p in enumerate(preds):
writer.writerow([i, p])
preds = test(tt_set, model, device) # 预测测试集的结果
save_pred(preds, 'pred.csv') # 保存预测结果到 pred.csv