贝叶斯算法的理解

假设基本的概率论只是你已经掌握,OK!

一、推导贝叶斯定理

假设A和B为两个不相互独立的事件。

交集(intersection): 

并集(union): 

1、在事件B已经发生的情况下,事件A发生的概率为事件A和事件B的交集除以事件B:

同理,在事件A已经发生的情况下,事件B发生的概率为事件A和事件B的交集除以事件A:

注:表示 A,B 事件同时发生的概率,如果 A 和 B 是相互独立的两个事件,那么:

由上面的公式可以得到:

然后,我们就可以得到贝叶斯定理

那么如何理解呢??? 

二、理解贝叶斯定理

后验概率 = 先验概率 X 调整因子

从公式看,我们需要知道这么3个事情:

1)先验概率

我 们把P(A)称为'先验概率'(Prior probability),即在不知道B事件的前提下,我们对A事件概率的一个主观判断。

2)可能性函数

P(B|A)/P(B)称为'可能性函数'(Likelyhood),这是一个调整因子,即新信息B带来的调整,作用是使得先验概率更接近真实概率。

如果'可能性函数'P(B|A)/P(B)>1,意味着'先验概率'被增强,事件A的发生的可能性变大;

如果'可能性函数'=1,意味着B事件无助于判断事件A的可能性;

如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小

通俗理解:根据B的信息,我调查B的相关信息,并且通过B的相关信息了解A的信息。从而估计出'可能性函数'P(B|A)/P(B)=a

3)后验概率

P(A|B)称为'后验概率'(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

三、朴素贝叶斯算法优缺点

1、朴素贝叶斯算法优点

  1. 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
  2. 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
  3. 对缺失数据不太敏感,算法也比较简单,常用于文本分类。

2、朴素贝叶斯缺点

  1. 需要知道先验概率。
  2. 由于使用了样本属性独立性的假设,所以 在属性个数比较多或者属性之间相关性较大时,分类效果不好。

3、朴素贝叶斯应用领域

  1. 文本分类、欺诈检测中使用较多

 


参考:
https://www.jianshu.com/p/4d5e3655269e

https://www.cnblogs.com/HuZihu/p/9368355.html

 

 

朴素贝叶斯算法是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立,从而简化计算。其核心思想是利用先验概率和条件概率对样本进行分类。 具体地,假设有一个待分类的样本x,其中x的特征为{x1, x2, ..., xn},而类别为C。根据贝叶斯定理,可以将分类问题转化为求解P(C|x),即在给定特征x的条件下,样本属于类别C的概率。 根据链式法则,P(C|x)可以表示为P(x|C)P(C)/P(x),其中P(x|C)表示在类别C的条件下,特征x的概率,P(C)表示类别C的先验概率,P(x)表示特征x的概率。由于P(x)对于所有类别都是相同的,因此可以忽略掉,得到以下公式: P(C|x) = P(x|C)P(C) 为了求解P(C|x),需要先求出P(x|C)和P(C)。其中,P(C)可以通过样本中每个类别的出现次数除以总样本数得到,而P(x|C)则需要根据样本特征进行计算。 在朴素贝叶斯算法中,假设特征之间相互独立,因此可以将P(x|C)表示为各个特征条件概率的乘积,即: P(x|C) = P(x1|C) * P(x2|C) * ... * P(xn|C) 对于离散型特征,可以直接计算出每个特征在类别C下出现的概率。对于连续型特征,则需要先对特征进行离散化处理,再根据离散化后的值计算概率。 最终,对于一个待分类的样本x,可以计算出其属于每个类别的概率,选择概率最大的类别作为预测结果。 朴素贝叶斯算法简单、易于实现,适用于处理高维数据和大规模数据集。但它也有一些缺点,如假设特征之间相互独立可能会导致分类错误,需要根据具体情况进行选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值