opencv读书笔记--图像分割

本文介绍了如何使用OpenCV库中的Watershed算法进行图像分割。首先,通过阈值处理和形态学操作来预处理图像,然后进行距离变换和连接组件分析以确定前景和背景。接着,利用标记的图像输入到Watershed函数中,最终得到分割结果,其中边界区域被标记为-1。
摘要由CSDN通过智能技术生成

图像分割与Watershed算法

原文地址:http://www.woshicver.com/FifthSection/4_15_%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2%E4%B8%8E%E5%88%86%E6%B0%B4%E5%B2%AD%E7%AE%97%E6%B3%95/
使用分水岭实现基于标记的图像分割:cv.watershed()
具体操作方案:给我们知道的对象赋予不同的标签,用一种颜色标记我们确定为前景或者对象的区域,然后应用分水岭算法,然后我们的标记将使用我们给出的标签进行更新,对象的边界值将为-1.

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('C:\\Users\\Yan.Dong5\\Desktop\\shudu.jpeg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV+cv.THRESH_OTSU)
#噪声去除
kernel = np.ones((3,3),np.uint8)
#形态学滤波
opening = cv.morphologyEx(thresh,cv.MORPH_OPEN,kernel,iterations=2)
#确定背景区域
sure_bg = cv.dilate(opening,kernel,iterations=3)
#寻找前景区域
dist_transform = cv.distanceTransform(opening,cv.DIST_L2,5)
ret,sure_fg = cv.threshold(dist_transform,0.7*dist_transform.max(),255,0)
#类别标记
ret,markers = cv.connectedComponents(sure_fg)
#为所有的标记+1,保证背景是0而不是1
markers = markers+1
#现在让所有的未知区域为0
markers[unknown==255]=0
#使用分水岭算法,标记图像将被修改,边界区域将被标记为-1
markers = cv.watershed(img,markers)
img[markers==-1]=[255,0,0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值