深度学习
文章平均质量分 90
拓端研究室
这个作者很懒,什么都没留下…
展开
-
MATLAB中用BP神经网络预测人体脂肪百分比数据
原文链接:http://tecdat.cn/?p=22739这个例子说明了一个函数拟合的神经网络如何根据测量结果来估计脂肪百分比(BFP)。问题:估计脂肪百分比在这个例子中,我们试图建立一个神经网络来估计一个人的脂肪百分比,这个人由13个物理属性描述。年龄 体重 身高 颈围 胸围 腹部周长 臀围 大腿周长 膝盖周长 踝关节周长 肱二头肌(伸展)周长 前臂周长 腕围这是一个拟合问题的例子,其中输入与相关的目标输出相匹配,我们希望创建一个神经网络,它不仅可以估...原创 2021-06-10 17:29:05 · 970 阅读 · 2 评论 -
拓端tecdat|SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型
原文链接:http://tecdat.cn/?p=20781什么是神经网络?人工神经网络最初是由研究人员开发的,他们试图模仿人脑的神经生理学。通过将许多简单的计算元素(神经元或单元)组合成高度互连的系统,这些研究人员希望产生诸如智能之类的复杂现象。神经网络是一类灵活的非线性回归,判别模型。通过检测数据中复杂的非线性关系,神经网络可以帮助做出有关实际问题的预测。神经网络对于存在以下条件的预测问题特别有用: 尚无将输入与输出相关的数学公式。 预测模型比解释模型更重要。 ..原创 2021-03-04 15:45:18 · 3345 阅读 · 6 评论 -
拓端tecdat|R语言基于递归神经网络RNN的温度时间序列预测
原文链接:http://tecdat.cn/?p=20335在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数据序列。概述在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。在最后,您将了解有关将循环网络与Keras一起使用的大部分知识。您可以访问来自建筑物屋顶上的传感器的时间数据序列,例如温度,气压和湿度,这些数据点可用于预测最后一个数据点之后24小时的温度。这是一个相当具有挑战...原创 2021-02-19 00:12:42 · 2788 阅读 · 0 评论 -
R语言神经网络模型预测车辆数量时间序列
具有单个隐藏层和滞后输入的前馈神经网络,可以用于预测单变量时间序列。将神经网络模型拟合到以时间序列的滞后值作为输入的时间序列。因此它是一个非线性的模型,不可能得出预测区间。...原创 2020-05-21 13:14:59 · 561 阅读 · 0 评论 -
拓端tecdat|R语言中的BP神经网络模型分析学生成绩
原文链接:http://tecdat.cn/?p=19936在本教程中,您将学习如何在R中创建神经网络模型。神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编.....原创 2021-02-08 00:02:08 · 3356 阅读 · 2 评论 -
拓端tecdat|matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。本示例使用[1]和[2]中所述的日语元音数据集。此示例训练LSTM网络以识别给定时间序列数据的说话者,该时间序列数据表示连续讲话的两个日语元音。训练数据包含九位发言人的时间序列数据。每个序列具有12个特征,并且长度不同。数据集包含270个训练观察和370个测试观察。加载顺序数据加载日语元音训原创 2021-01-28 14:17:24 · 3127 阅读 · 2 评论 -
拓端tecdat|【视频】CNN(卷积神经网络)模型以及R语言实现
原文链接:http://tecdat.cn/?p=18149视频:R语言实现CNN(卷积神经网络)模型进行回归数据分析无人驾驶汽车最早可以追溯到1989年。神经网络已经存在很长时间了,那么近年来引发人工智能和深度学习热潮的原因是什么呢?[1秒]答案部分在于摩尔定律以及硬件和计算能力的显著提高。我们现在可以事半功倍。顾名思义,神经网络的概念是受我们自己大脑神经元网络的启发。神经元是非常长的细胞,每个细胞都有称为树突的突起,分别从周围的神经元接收和传播电化学信号。结果,我们的脑细胞形成..原创 2020-12-11 11:52:03 · 2953 阅读 · 0 评论 -
拓端tecdat|【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析
当我们将CNN(卷积神经网络)模型用于训练多维类型的数据(例如图像)时,它们非常有用。我们还可以实现CNN模型进行回归数据分析。我们之前使用Python进行CNN模型回归 ,在本文中,我们在R中实现相同的方法。......原创 2020-12-03 09:13:29 · 2859 阅读 · 4 评论 -
拓端tecdat|TensorFlow 2.0 keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
深度学习模型生命周期在本部分中,您将发现深度学习模型的生命周期以及可用于定义模型的两个tf.keras API。五步模型生命周期模型具有生命周期,这一非常简单的知识为建模数据集和理解tf.keras API提供了基础。生命周期中的五个步骤如下:定义模型。 编译模型。 拟合模型。 评估模型。 作出预测。让我们依次仔细研究每个步骤。定义模型定义模型要求您首先选择所需的模型类型,然后选择体系结构或网络拓扑。从API的角度来看,这涉及到定义模型的各层,为每个层配置许多节点和原创 2020-09-16 14:19:29 · 2266 阅读 · 0 评论 -
拓端tecdat|TensorFlow 2建立神经网络分类模型——以iris数据为例
这个教程将利用机器学习的手段来对鸢尾花按照物种进行分类。本教程将利用 TensorFlow 来进行以下操作:构建一个模型, 用样例数据集对模型进行训练,以及 利用该模型对未知数据进行预测。TensorFlow 编程本指南采用了以下高级 TensorFlow 概念:使用 TensorFlow 默认的eager execution开发环境, 使用Datasets API导入......原创 2020-09-14 15:34:03 · 1686 阅读 · 0 评论 -
sas神经网络:构建人工神经网络模型来识别垃圾邮件
神经网络是一种非常通用的灵活预测模型,可用于解决各种问题,包括分类,降维和回归。现实世界中的一些业务应用示例包括图像处理,医疗诊断,金融服务和欺诈检测。此样本说明如何使用SAS®In-Memory Statistics中的NEURAL语句来构建人工神经网络模型来识别垃圾邮件。该示例中使用的数据集是UCI机器学习存储库(http://archive.ics.uci.edu/ml/datasets/Spambase)中的经典Spambase数据集。请注意,SAS®内存中统计信息具有直接将数据直接从URL加载到内原创 2020-07-08 13:09:58 · 1482 阅读 · 1 评论 -
R语言基于递归神经网络RNN的温度时间序列预测
在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们将演示有关温度预测问题的所有三个概念,在这里您可以访问来自安装在建筑物屋顶上的传感器的时间数据序列。...原创 2020-05-21 11:12:16 · 838 阅读 · 0 评论